Аминокислоты — Википедия
Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде). [1] Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.
Большинство из около 500 известных аминокислот были открыты после 1953 года, например во время поиска новых антибиотиков в среде микроорганизмов, грибов, семян, растений, фруктов и жидкостях животных. Примерно 240 из них встречается в природе в свободном виде, а остальные только как промежуточные элементы обмена веществ.
Открытие аминокислот в составе белков[править | править код]
Аминокислота | Аббревиатура | Год | Источник | Впервые выделен[2] |
---|---|---|---|---|
Глицин | Gly, G | 1820 | Желатин | А. Браконно |
Лейцин | Leu, L | 1820 | Мышечные волокна | А. Браконно |
Тирозин | Tyr, Y | 1848 | Казеин | Ю. фон Либих |
Серин | Ser, S | 1865 | Шёлк | Э. Крамер |
Глутаминовая кислота | Glu, E | 1866 | Растительные белки | Г. Риттхаузен[de] |
Глутамин | Gln, Q | |||
Аспарагиновая кислота | Asp, D | 1868 | Конглутин, легумин (ростки спаржи) | Г. Риттхаузен[en] |
Аспарагин | Asn, N | 1806 | Сок спаржи | Л.-Н. Воклен и П. Ж. Робике |
Фенилаланин | Phe, F | 1881 | Ростки люпина | Э. Шульце, Й. Барбьери |
Аланин | Ala, A | 1888 | Фиброин шелка | А. Штреккер, Т. Вейль |
Лизин | Lys, K | 1889 | Казеин | |
Аргинин | Arg, R | 1895 | Вещество рога | С. Гедин |
Гистидин | His, H | 1896 | Стурин, гистоны | А. Коссель[3], С. Гедин |
Цистеин | Cys, C | 1899 | Вещество рога | К. Мёрнер |
Валин | Val, V | 1901 | Казеин | Э. Фишер |
Пролин | Pro, P | 1901 | Казеин | Э. Фишер |
Гидроксипролин | Hyp, hP | 1902 | Желатин | Э. Фишер |
Триптофан | Trp, W | 1902 | Казеин | Ф. Хопкинс, Д. Кол |
Изолейцин | Ile, I | 1904 | Фибрин | Ф. Эрлих |
Метионин | Met, M | 1922 | Казеин | Д. Мёллер |
Треонин | Thr, T | 1925 | Белки овса | С. Шрайвер и др. |
Гидроксилизин | Hyl, hK | 1925 | Белки рыб | С. Шрайвер и др. |
Жирным шрифтом выделены незаменимые аминокислоты
По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной.
Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы —COOH, так и основные свойства, обусловленные аминогруппой —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:
- NH2 —CH
- NH2 —CH2 —COOH + NaOH → H2O + NH2 —CH2 —COONa (натриевая соль глицина)
Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.
- NH2 —CH2COOH N+H3 —CH2COO—
Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.
Этерификация:
- NH2 —CH2 —COOH + CH3OH → H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)
Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.
Реакция образования пептидов:
- HOOC —CH2 —NH —H + HOOC —CH2 —NH2→ HOOC —CH2 —NH —CO —CH2 —NH2 + H2O
Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.
Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO−. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.
Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.
Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:
- CH3COOH + Cl2 + (катализатор) → CH2ClCOOH + HCl; CH2ClCOOH + 2NH3→ NH2 —CH2COOH + NH4Cl
Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белка, синтезируемых на рибосомах.
Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год
С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов.
В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.
Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.[8]
Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путём нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.
В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O).
Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся нерешённым[12]. Решение этого вопроса смотрим в работе[13]. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.
Структурные формулы 20 протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:
Классификация[править | править код]
Аминокислота | 3-буквы[14] | 1-буква[14] | аминокислот | мнемоническое правило[15] | Полярность[16] | радикалу | Mr | Vw (Å3) | pI | шкала гидрофобности[17] | частота в белках (%)[18] |
---|---|---|---|---|---|---|---|---|---|---|---|
Глицин | Gly | G | GGU, GGC, GGA, GGG | Glycine | Неполярные | Алифатические | 75.067 | 48 | 6.06 | −0.4 | 7.03 |
Аланин | Ala | A | GCU, GCC, GCA, GCG | Alanine | Неполярные | Алифатические | 89.094 | 67 | 6.01 | 1.8 | 8.76 |
Валин | Val | V | GUU, GUC, GUA, GUG | Valine | Неполярные | Алифатические | 117.148 | 105 | 6.00 | 4.2 | 6.73 |
Изолейцин | Ile | I | AUU, AUC, AUA | Isoleucine | Неполярные | Алифатические | 131.175 | 124 | 6.05 | 4.5 | 5.49 |
Лейцин | Leu | L | UUA, UUG, CUU, CUC, CUA, CUG | Leucine | Неполярные | Алифатические | 131.175 | 124 | 6.01 | 3.8 | 9.68 |
Пролин | Pro | P | CCU, CCC, CCA, CCG | Proline | Неполярные | Гетероциклические | 115.132 | 90 | 6.30 | −1.6 | 5.02 |
Серин | Ser | S | UCU, UCC, UCA, UCG, AGU, AGC | Serine | Полярные | Оксимоноаминокарбоновые | 105.093 | 73 | 5.68 | −0.8 | 7.14 |
Треонин | Thr | T | ACU, ACC, ACA, ACG | Threonine | Полярные | Оксимоноаминокарбоновые | 119.119 | 93 | 5.60 | −0.7 | 5.53 |
Цистеин | Cys | C | UGU, UGC | Cysteine | Полярные | Серосодержащие | 121.154 | 86 | 5.05 | 2.5 | 1.38 |
Метионин | Met | M | AUG | Methionine | Неполярные | Серосодержащие | 149.208 | 124 | 5.74 | 1.9 | 2.32 |
Аспарагиновая кислота | Asp | D | GAU, GAC | asparDic acid | Полярные заряженные отрицательно | заряженные отрицательно | 133.104 | 91 | 2.85 | −3.5 | 5.49 |
Аспарагин | Asn | N | AAU, AAC | asparagiNe | Полярные | Амиды | 132.119 | 96 | 5.41 | −3.5 | 3.93 |
Глутаминовая кислота | Glu | E | GAA, GAG | gluEtamic acid | Полярные заряженные отрицательно | заряженные отрицательно | 147.131 | 109 | 3.15 | −3.5 | 6.32 |
Глутамин | Gln | Q | CAA, CAG | Q-tamine | Полярные | Амиды | 146.146 | 114 | 5.65 | −3.5 | 3.9 |
Лизин | Lys | K | AAA, AAG | before L | Полярные | заряженные положительно | 146.189 | 135 | 9.60 | −3.9 | 5.19 |
Аргинин | Arg | R | CGU, CGC, CGA, CGG, AGA, AGG | aRginine | Полярные | заряженные положительно | 174.203 | 148 | 10.76 | −4.5 | 5.78 |
Гистидин | His | H | CAU, CAC | Histidine | Полярные заряженные положительно | Гетероциклические | 155.156 | 118 | 7.60 | −3.2 | 2.26 |
Фенилаланин | Phe | F | UUU, UUC | Fenylalanine | Неполярные | Ароматические | 165.192 | 135 | 5.49 | 2.8 | 3.87 |
Тирозин | Tyr | Y | UAU, UAC | tYrosine | Полярные | Ароматические | 181.191 | 141 | 5.64 | −1.3 | 2.91 |
Триптофан | Trp | W | UGG | tWo rings | Неполярные | Ароматические, Гетероциклические | 204.228 | 163 | 5.89 | −0.9 | 6.73 |
По радикалу[править | править код]
- Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин
- Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, метионин, аспарагин, глутамин
- Ароматические: фенилаланин, триптофан, тирозин
- Полярные заряженные отрицательно при pH=7: аспартат, глутамат
- Полярные заряженные положительно при pH=7: лизин, аргинин, гистидин[16]
По функциональным группам[править | править код]
- Алифатические
- Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
- Оксимоноаминокарбоновые: серин, треонин
- Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
- Амиды моноаминодикарбоновых: аспарагин, глутамин
- Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
- Серосодержащие: цистеин, метионин
- Ароматические: фенилаланин, тирозин, триптофан,
- Гетероциклические: триптофан, гистидин, пролин
- Иминокислоты: пролин
По классам аминоацил-тРНК-синтетаз[править | править код]
- Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
- Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин
Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.
По путям биосинтеза[править | править код]
Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:
- Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
- Семейство глутамата: глутамат, глутамин, аргинин, пролин.
- Семейство пирувата: аланин, валин, лейцин.
- Семейство серина: серин, цистеин, глицин.
- Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.
Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.
По способности организма синтезировать из предшественников[править | править код]
- Незаменимые
- Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.
- Заменимые
- Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.
Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.
По характеру катаболизма у животных[править | править код]
Биодеградация аминокислот может идти разными путями.
По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы:
Аминокислоты:
- Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.
- Кетогенные: лейцин, лизин.
- Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.
«Миллеровские» аминокислоты[править | править код]
«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат
В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:
Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.[19]
Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты.[20]
- ↑ 1 2 Wagner I., Musso H. New Naturally Occurring Amino Acids (нем.) // Angewandte Chemie International Edition in English : magazin. — 1983. — November (Bd. 22, Nr. 11). — S. 816—828. — DOI:10.1002/anie.198308161.
- ↑ Овчинников Ю. А. «Биоорганическая химия» М:Просвещение, 1987. — 815 с., стр. 25.
- ↑ Карпов В. Л. От чего зависит судьба гена (рус.) // Природа. — Наука, 2005. — № 3. — С. 34—43.
- ↑ Helfman, P M; J L Bada. Aspartic acid racemization in tooth enamel from living humans (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1975. — Vol. 72, no. 8. — P. 2891 —2894.
- ↑ CLOOS P; FLEDELIUS C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential (неопр.) (1 февраля 2000). Дата обращения 5 сентября 2011. Архивировано 2 февраля 2012 года.
- ↑ J. van Heijenoort. Formation of the glycan chains in the synthesis of bacterial peptidoglycan // Glycobiology. — 2001-3. — Т. 11, вып. 3. — С. 25R—36R. — ISSN 0959-6658.
- ↑ Herman Wolosker, Elena Dumin, Livia Balan, Veronika N. Foltyn. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration // The FEBS journal. — 2008-7. — Т. 275, вып. 14. — С. 3514—3526. — ISSN 1742-464X. — DOI:10.1111/j.1742-4658.2008.06515.x.
- ↑ H. Brötz, M. Josten, I. Wiedemann, U. Schneider, F. Götz. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics // Molecular Microbiology. — 1998-10. — Т. 30, вып. 2. — С. 317—327. — ISSN 0950-382X.
- ↑ Linda Johansson, Guro Gafvelin, Elias S.J. Arnér. Selenocysteine in proteins—properties and biotechnological use // Biochimica et Biophysica Acta (BBA) — General Subjects. — 2005-10. — Т. 1726, вып. 1. — С. 1—13. — ISSN 0304-4165. — DOI:10.1016/j.bbagen.2005.05.010.
- ↑ Joseph A. Krzycki. The direct genetic encoding of pyrrolysine // Current Opinion in Microbiology. — 2005-12. — Т. 8, вып. 6. — С. 706—712. — ISSN 1369-5274. — DOI:10.1016/j.mib.2005.10.009.
- ↑ Alexandre Ambrogelly, Sotiria Palioura, Dieter Söll. Natural expansion of the genetic code // Nature Chemical Biology. — 2007-1. — Т. 3, вып. 1. — С. 29—35. — ISSN 1552-4450. — DOI:10.1038/nchembio847.
- ↑ Andrei S. Rodin, Eörs Szathmáry, Sergei N. Rodin. On origin of genetic code and tRNA before translation // Biology Direct. — 2011-02-22. — Т. 6. — С. 14. — ISSN 1745-6150. — DOI:10.1186/1745-6150-6-14.
- ↑ Burtyka M.V. Биометрия: метрика молекулярного углеродистого многообразия.CTAG biometry=http://biometry-burtyka.blogspot.com.
- ↑ 1 2 Cooper, Geoffrey M. The cell : a molecular approach. — 3rd ed. — Washington, D.C.: ASM Press, 2004. — xx, 713 pages с. — ISBN 0878932143, 9780878932146, 0878930760, 9780878930760.
- ↑ Р. Б. Соловьев, учитель биологии. Несколько мнемонических правил
- ↑ 1 2 Березов Т.Т., Коровкин Б.Ф. Классификация аминокислот // Биологическая химия. — 3-е изд., перераб. и доп.. — М.: Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.
- ↑
ru.wikipedia.org
Незаменимые аминокислоты — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 сентября 2018; проверки требуют 53 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 сентября 2018; проверки требуют 53 правки. 21 протеиногенная α-аминокислота эукариот, сгруппированные согласно радикалам.Незаменимые аминокислоты — необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме. Для разных видов организмов список незаменимых аминокислот различен. Все белки, синтезируемые организмом, собираются в клетках из 20 базовых аминокислот, только часть из которых может синтезироваться организмом. Невозможность сборки определенного белка организмом приводит к нарушению его нормальной работы, поэтому необходимо поступление незаменимых аминокислот в организм с пищей. [1]
Незаменимыми для взрослого здорового человека являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин; также часто к незаменимым относят гистидин [2][3]; (F V T W M L I K H). Для детей также незаменимым является аргинин.
6 других аминокислот (R C G Q P Y) считаются условно незаменимыми в питании человека, что означает ограниченные возможности их синтеза в зависимости от состояния организма, например у новорожденных и больных людей.[4].
5 аминокислот (A D N E S) — заменимые у человека, означает что они могут синтезироваться в достаточных количествах в организме.[4]
Роль незаменимых для человека аминокислот[править | править код]
В результате дефицита необходимых аминокислот в организме человека нарушается синтез белков, что приводит к ослаблению функций памяти и умственных способностей, снижению иммунитета (сопротивляемости организма болезням). В то же время избыток потребления несбалансированного белка приводит к перегрузке работы органов, в первую очередь печени и почек. Ценность потребляемого с пищей белка для человека определяется его сбалансированностью по содержанию незаменимых аминокислот.[1]
Рассчитать требования к рекомендованной суточной норме достаточно сложно; эти значения претерпели значительные изменения за последние 20 лет. Следующая таблица представляет список рекомендованных ВОЗ и Национальной библиотекой медицины США суточных норм для взрослого человека.[5][6]
Аминокислота(ы) | ВОЗ мг на 1 кг веса тела | ВОЗ мг для веса 70 кг | США мг на 1 кг веса тела | Кодирующий кодон генетического кода |
---|---|---|---|---|
H Гистидин | 10 | 700 | 14 | CAU, CAC |
I Изолейцин | 20 | 1400 | 19 | AUU, AUC, AUA |
L Лейцин | 39 | 2730 | 42 | UUA, UUG, CUU, CUC, CUA, CUG |
K Лизин | 30 | 2100 | 38 | AAA, AAG |
M Метионин + C Цистеин | 10.4 + 4.1 (15 всего) | 1050 всего | 19 всего | Метионин: AUG; Цистеин: UGU, UGC. |
F Фенилаланин + Y Тирозин | 25 (всего) | 1750 всего | 33 всего | Фенилаланин: UUU, UUC; Тирозин: UAU,UAC . |
T Треонин | 15 | 1050 | 20 | ACU, ACC, ACA, ACG |
W Триптофан | 4 | 280 | 5 | UGG |
V Валин | 26 | 1820 | 24 | GUU, GUC, GUA, GUG |
Рекомендованная суточная норма для детей от 3 лет и старше на 10-20% выше, чем для взрослого.[5][7]
Продукты с повышенным содержанием отдельных незаменимых аминокислот[править | править код]
- Валин: зерновые, бобовые, арахис, грибы, молочные продукты, мясо.
- Изолейцин: миндаль, кешью, турецкий горох (нут), чечевица, рожь, большинство семян, соя, яйца, куриное мясо, рыба, печень, мясо.
- Лейцин: чечевица, орехи, большинство семян, овёс, бурый (неочищенный) рис, рыба, яйца, курица, мясо.
- Лизин: пшеница, орехи, амарант, молочные продукты, рыба, мясо, горох.
- Метионин: бобы, фасоль, чечевица, соя, молоко, яйца, рыба, мясо.
- Треонин: орехи, бобы, молочные продукты, яйца.
- Триптофан: бобовые, овёс, сушёные финики[источник не указан 1916 дней], арахис, кунжут, кедровые орехи, молоко, йогурт, творог, рыба, курица, индейка, мясо.
- Фенилаланин: бобовые, орехи, говядина, куриное мясо, рыба, яйца, творог, молоко. Также образуется в организме при распаде синтетического сахарозаменителя — аспартама, активно используемого в пищевой промышленности.
- Аргинин (частично-заменимая аминокислота, образуется из аминокислот, поступающих с пищей, не путать с условно-заменимыми, которые образуются из незаменимых кислот, не поступающих с пищей): семена тыквы, арахис, кунжут, йогурт, швейцарский сыр, свинина, говядина, горох.
- Гистидин (частично-заменимая аминокислота): соевые бобы, арахис, чечевица, тунец, лосось, куриные грудки, свиная вырезка, говяжье филе.
Компенсация незаменимых аминокислот[править | править код]
Несмотря на то, что самостоятельно организм не способен синтезировать незаменимые аминокислоты, их недостаток в некоторых случаях все же может быть частично компенсирован. Так, например, недостаток поступающего вместе с пищей незаменимого фенилаланина может быть частично замещен заменимым тирозином. Гомоцистеин вместе с необходимым количеством доноров метильных групп снижает потребности в метионине, а глутаминовая кислота частично замещает аргинин.
- ↑ 1 2 https://cyberleninka.ru/article/n/metodologiya-otsenki-sbalansirovannosti-aminokislotnogo-sostava-mnogokomponentnyh-pischevyh-produktov.pdf
- ↑ https://www.ncbi.nlm.nih.gov/pubmed/1123426 1975
- ↑ apps.who.int/iris/bitstream/10665/38133/1/9251030979_eng.pdf 1991
- ↑ 1 2 Dietary Reference Intakes: The Essential Guide to Nutrient Requirements Архивировано 5 июля 2014 года.. Institute of Medicine’s Food and Nutrition Board. usda.gov
- ↑ 1 2 FAO/WHO/UNU. PROTEIN AND AMINO ACID REQUIREMENTS IN HUMAN NUTRITION (неопр.). WHO Press (2007)., page 150
- ↑ Institute of Medicine (англ.)русск.. Protein and Amino Acids // Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (англ.). — Washington, DC: The National Academies Press (англ.)русск., 2002. — P. 589—768.
- ↑ Imura K., Okada A. Amino acid metabolism in pediatric patients (неопр.) // Nutrition. — 1998. — Т. 14, № 1. — С. 143—148. — DOI:10.1016/S0899-9007(97)00230-X. — PMID 9437700.
- Amino acids / MedlinePlus Encyclopedia, 2015: (англ.) «The 9 essential amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.»
- https://web.archive.org/web/20150226110517/http://www.uic.edu/classes/phar/phar332/Clinical_Cases/aa%20metab%20cases/PKU%20Cases/essential-nonessential.htm
- ESSENTIAL AMINO ACID REQUIREMENTS: A REVIEW / FAO, 1981
- Recommended Dietary Allowances: 10th Edition., National Research Council (US), National Academies Press 1989. Chapter 6 «Protein and Amino Acids» (англ.)
ru.wikipedia.org
Про растительные белки, аминокислоты и их источники, тоже растительные
На самом деле, стройматериалом являются не сами белки, которые мы употребляем в пищу, а содержащиеся в них аминокислоты. Попадая в наш организм, белок расщепляется на аминокислоты, а вот из них уже, в свою очередь, и строятся наши мышцы, кости, волосы, ногти и прочие нужные ткани, и не только, нашего тела.
Итак, коротенько, что такое белок или протеин:
Стройматериал, в частности, волос, кожи, ногтей, мышц. Кроме того, архиважен для здоровья нейромедиаторов и хорошего уровня энергии.
Белки — это очень большие молекулы, состоящие из остатков аминокислот, и именно то, какую роль играет (т.е. какую функцию выполняет) та или иная аминокислота, и определяется, каков белок и какова его ценность, т.е. насколько ценны аминокислоты, его составляющие. Из аминокислот, поступивших с пищей, после того, как наш чудесный организм расщепит поступившие белки, он самостоятельно строит нужные ему белки.
Только растения могут синтезировать все необходимые для себя аминокислоты. Для нас, людей, и для наших маленьких друзей, питомцев, необходимо добирать необходимые или т.н. незаменимые аминокислоты, вместе с пищей.
Важно, что говядина, курица, яйца, свинина и молоко не являются единственными источниками незаменимых аминокислот! Растительные продукты тоже могут прекрасно обеспечить наш организм аминокислотами для строительства белков и образовывать полноценные белки.
Из 22 аминокислот, которые существуют, 9 являются основными. Некоторые источники аминокислот (например, конопляные семечки) содержат все незаменимые аминокислоты, хотя все растительные продукты могут образовывать полноценные белки, попав в организм.
Основные незаменимые аминокислоты:
1. Лейцин.
Способствует мышечной силе и росту мышц, помогает регулировать уровень сахара в крови путем координации инсулина в организме во время и после физических упражнений и даже может помочь в лечении депрессии, другими словами, действует на образование нейротрансмитеров в головном мозге. Является специфическим источником энергии на клеточном уровне, укрепляет иммунную систему, способствует быстрому заживлению ран.
Где берем: морские водоросли, тыква, горох и белок гороха, все рисовые, семена кунжута, кресс-салат, зелень репы, сои, семян подсолнечника, фасоль, инжир, авокадо, изюм, финики, яблоки, черника, оливки и даже бананы.
2. Изолейцин.
Помогает организму вырабатывать энергию и гемоглобин. Способствует росту и развитию мышц, регулирует сахар в крови, утилизирует холестерин. Способствует снижению стресса, подавляя секрецию гормона стресса — кортизола.
Где берем: рожь, соя, орехи кешью, миндаль, овес, чечевица, фасоль, коричневый рис, капуста, семена конопли, семена чиа, шпинат, тыква, тыквенные семечки, семена подсолнечника и кунжута, клюква, лебеда, черника, яблоки и киви.
3. Лизин.
Помогает организму усваивать кальций и производить коллаген. Дефицит этой аминокислоты может привести к тошноте, депрессии, усталости, истощению мышц и даже остеопорозу.
Где берем: фасоль (лучше всего), кресс-салат, семена конопли и чиа, спирулина, петрушка, авокадо, соевый белок, миндаль, кешью, некоторые бобовые с чечевицей и нут.
4. Метионин.
Способствует формированию хрящевых тканей в организме, содержит серу. Сера — минерал, имеющий важное значение в производстве костной и хрящевой тканей. Недостаток ведет к артриту, плохому заживлению тканей. Метионин также способствует формированию креатина, необходимого для оптимального уровня клеточной энергии.
Где берем: подсолнечное масло и семена подсолнечника, семена конопли и чиа, бразильские орехи, овес, морские водоросли, пшеница, рис, цельнозерновой рис, бобы, бобовые, лук, какао и изюм.
5. Фенилаланин.
Эта аминокислота бывает в трех формах: L-phenalynaline (естественная форма белка), D-phenalynaline (форма, произведенная химическим путем) и DL phenalynaline (сочетание обеих форм).
Играет важную роль в организме: превращается в тирозин — стройматериал химических веществ головного мозга и гормонов щитовидной железы. Недостаток этой аминокислоты может привести к мозговому туману, отсутствию энергии, депрессии, снижению аппетита или проблемам с памятью.
Где берем: спирулина и другие водоросли, тыква, фасоль, рис, авокадо, миндаль, арахис, лебеда, инжир, изюм, зелень, большинство ягод, маслины и семена.
6. Треонин.
Поддерживает здоровую иммунную систему, сердце, печень и здоровье центральной системы. Он также помогает поддерживать баланс белков в организме для восстановления энергии. Эта аминокислота также помогает соединительной ткани и суставам, производя глицин и серин в организме — две незаменимые аминокислоты, необходимые для здоровья костей, кожи, волос и ногтей. Он помогает пищеварению, а также печени, регулируя количество жирных кислот.
Где берем: кресс-салат и спирулина (там его больше, чем в мясе), тыква, зелень, семена конопли и чиа, соевые бобы, семена кунжута и подсолнечника, подсолнечное масло, миндаль, авокадо, инжир, изюм, лебеда и пшеница. Проросшие зерна также являются превосходными источниками этой аминокислоты.
7. Триптофан.
Самая известная расслабляющая аминокислота:), жизненно важная для здоровья нервной системы и мозга, кроме того, необходима для хорошего сна, восстановления, роста мышц и общей функции нейромедиаторов. Как мы уже знаем, содержится в индейке, молоке и сыре. Кроме того, триптофан превращается в серотонин (нейромедиатор счастья), что приводит к снижению уровня стресса и депрессии. Но, безусловно, есть масса растительных источников триптофана!
Где берем: овес и овсяные отруби, водоросли, семена конопли и чиа, шпинат, кресс-салат, бобы, тыква, сладкий картофель, петрушка, спаржа, грибы, все салаты, листовые, зелень, фасоль, авокадо, инжир, тыква, сельдерей, перец, морковь, горох, лук, яблоки, апельсины, бананы, лебеда, чечевица и горох.
8. Валин.
Необходим для оптимального роста и восстановления мышц. Также отвечает за выносливость и поддержание хорошего здоровья мышц. Подавляет секрецию гормона кортизола.
Где берем: фасоль, шпинат, бобовые, брокколи, семена кунжута и конопли, семена чиа, соя, арахис, цельное зерно, рис, авокадо, яблоки, пророщенные зерна и семена, черника, клюква, апельсины и абрикосы.
9. Гистидин.
Эта аминокислота помогает транспортировать медиаторы (химические посыльные) к мозгу, а также общему состоянию здоровья мышц. Помогает детоксикации организма за счет производства красных и белых кровяных клеток, необходимых для общего здоровья и иммунитета. Недостаток может привести к артриту, сексуальной дисфункции и даже глухоте.
Где берем: рис, пшеница, рожь, морские водоросли, фасоль, бобы, дыня, семена конопли и чиа, гречиха, картофель, цветная капуста и кукуруза.
Так что, если по каким-то причинам мы решили отказаться от употребления мяса, нас отнюдь не ждет полная атрофия мышц, выпадение волос и пр. Строительный материал для белков в нашем организме можно найти и в огромном количестве растительных продуктов.:)
Всем Сияния и Процветания в Новом году!
themindfulbeauty.com
Аминокислоты — www.calorizator.ru
Валин (Val, V)
Немного истории
Большинство аминокислот были открыты после во второй половине двадцатого века во время поиска новых антибиотиков из грибков, семян, фруктов и жидкостей животных. Первая аминокислота – аспарагин была открыта в 1806 году. Она была выделена из сока спаржи французским химиком Луи-Никола Вокленом и помощником Пьером Жаном Робике. Чуть позже, был получен лейцин из сыра и творога.
Что такое аминокислоты
С точки зрения биохимии, аминокислоты – это органические вещества, состоящие из углеродного скелета, аминной и карбоксильной группы. Благодаря последним двум радикалам, аминокислоты обладают уникальной способностью – проявлять свойства как кислот, так и щелочей.
Протеины – это 20 % человеческого тела, они принимают участие во всех биохимических процессах, а аминокислоты – это «строительный материал» для них. Клетки и ткани человеческого организма состоят преимущественно из аминокислот, ключевая роль которых – транспортировка и хранение питательных веществ.
Аминокислоты жизненно необходимы организму, без них невозможен синтез гормонов, пигментов, витаминов и пуринов. Далеко не все аминокислоты человеческий организм, в отличие от некоторых микроорганизмов и растений, может синтезировать самостоятельно, их необходимо получать из продуктов питания.
На сегодняшний день известно около 500 аминокислот, встречающихся в природе. Но только 20 из них, так называемых стандартных, протеиногенных аминокислот. Они, собственно, и составляют полипептидную цепь, содержащую генетический код.
Таблица. Стандартные протеиногенные аминокислоты
Аминокислота | Аббревиатура | Источник |
Глицин | Gly, G | Желатин |
Лейцин | Leu, L | Мышечные волокна |
Тирозин | Tyr, Y | Казеин |
Серин | Ser, S | Шёлк |
Глутаминовая кислота | Glu, E | Растительные белки |
Глутамин | Gln, Q |
|
Аспарагиновая кислота | Asp, D | Конглутин, легумин (ростки спаржи) |
Аспарагин | Asn, N | Сок спаржи |
Фенилаланин | Phe, F | Ростки люпина |
Аланин | Ala, A | Фиброин шелка |
Лизин | Lys, K | Казеин |
Аргинин | Arg, R | Вещество рога |
Гистидин | His, H | Стурин, гистоны |
Цистеин | Cys, C | Вещество рога |
Валин | Val, V | Казеин |
Пролин | Pro, P | Казеин |
Гидроксипролин | Hyp, hP | Желатин |
Триптофан | Trp, W | Казеин |
Изолейцин | Ile, I | Фибрин |
Метионин | Met, M | Казеин |
Треонин | Thr, T | Белки овса |
Гидроксилизин | Hyl, hK | Белки рыб |
Существует несколько способов классификации аминокислот, самая популярная – это классификация по способу синтезирования. По ней аминокислоты разделяют на два вида:
- Незаменимые – аминокислоты, которые не синтезируются в человеческом теле;
- Заменимые – те, что человеческий организм способен воспроизводить самостоятельно.
Заменимые и незаменимые аминокислоты
К заменимым, но необходимым человеческому организму, относят следующие аминокислоты: аланин, аспарагин, аспартат, глицин, глутамин, глутамат, пролин, серин, тирозин, цистеин, гидроксипролин, гидроксилизин.
Незаменимыми называют аминокислоты, не способные самостоятельно синтезироваться в организме человека к ним относят: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин, гистидин, аргинин. В организме ребенка также не синтезируется аргинин, по этому его также относят к незаменимым.
В каких продуктах содержатся аминокислоты
Аминокислоты – это составляющие части белка и, соответственно, логичным было бы предположить, что содержатся они именно в белковых продуктах, и это действительно так. Большое количество аминокислот содержится в яйцах, молочных продуктах, мясе и рыбе. Из продуктов растительного происхождения также можно получить аминокислоты незаменимые для организма. Высоко их содержание в сое, чечевице, фасоли и других бобовых. Орехи и семена в большом количестве содержат гистидин, аргинин и лизин, а крупы содержат лейцин, валин и изолейцин.
Ниже приведена таблица, из которой видно из каких продуктов можно получить незаменимые аминокислоты и их роль в организме.
Таблица. Продукты, содержащие незаменимые аминокислоты
Название | В каких продуктах содержится | Роль в организме |
Лейцин | Орехи, овес, рыба, яйца, курица, чечевица | Снижает содержание сахара в крови |
Изолейцин | Нут, чечевица, кешью, мясо, соя, рыба, яйца, печень, миндаль, мясо | Восстанавливает мышечную ткань |
Лизин | Амарант, пшеница, рыба, мясо, большинство молочных продуктов | Принимает участие в усвоении кальция |
Валин | Арахис, грибы, мясо, бобовые, молочные продукты, многие зерновые | Принимает участие в обменных процессах азота |
Фенилаланин | Говядина, орехи, творог, молоко, рыба, яйца, разные бобовые | Улучшение памяти |
Треонин | Яйца, орехи, бобы, молочные продукты | Синтезирует коллаген |
Метионин | Фасоль, соя, яйца, мясо, рыба, бобовые, чечевица | Принимает участие в защите от радиации |
Триптофан | Кунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, индейка, мясо, рыба, сушенные финики | Улучшает и делает сон глубже |
Гистидин (частично-заменимая) | Чечевица, соевые бобы, арахис, тунец, лосось, говяжье и куриное филе, свиная вырезка | Принимает участие в противовоспалительных реакциях |
Аргинин(частично-заменимая) | Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахис | Способствует росту и восстановлению тканей организма |
Подробнее о каждой аминокислоте вы можете узнать, перейдя на ее страничку.
Наш организм нуждается в аминокислотах ежедневно и, согласно биологическим исследованиям, суточная норма потребления белка составляет от 0.5 до 2 грамм в сутки на 1 килограмм веса. Из разных продуктов белок усваивается организмом по-разному. Считается, что лучше всего усваивается белок полученный из яиц, творога и рыбы.
Аминокислоты в организме человека
Организм человека на 20% состоит из белка – он является главным строительным материалом, для мышечной ткани, всех органов и клеток. Белок – это наша кожа и волосы, клетки крови, мышцы и все остальные системы.
Аминокислоты, в свою очередь, являются строительным материалом для белка. По сути можно сказать, что белок (протеин) состоит из аминокислот.
В организме человека аминокислоты выполняют важнейшие функции: они принимают участие в синтезе гормонов, пигментов и витаминов, играют ключевую роль в транспортировке и хранении питательных веществ.
Вот перечень лишь нескольких, самых важных функций аминокислот в организме:
- В первую очередь аминокислоты нужны для формирования белка, который входит в состав мышечной ткани связок и сухожилий.
- Аминокислоты оптимизируют восстановительные процессы, ускоряют заживление повреждений кожных покровов.
- Аминокислоты очень важны для нормального функционирования головного мозга и нервной системы.
- Важную роль, играют аминокислоты и в образовании ферментов.
- Без аминокислот невозможен нормальный качественный сон.
- Ну и, наконец, аминокислоты влияют на здоровье волос, ногтей и кожи.
Из всех вышеперечисленных пунктов понятно, что аминокислоты, человеку необходимы и получать их нужно в достатке, для нормального функционирования всех систем организма. Ниже мы рассмотрим, что бывает при недостатке аминокислот, их избытке и из каких продуктов можно получить незаменимые аминокислоты.
Нехватка и избыток аминокислот
Наш организм устроен так, что все должно находиться в гармонии и балансе. Поэтому негативные последствия возникают как при нехватке аминокислот, так и при их избытке. Каждая аминокислота выполняет в организме свою функцию, у нее свои задачи, и соответственно часто бывает так, что не хватает в организме не всех аминокислот, а лишь нескольких, чтобы выявить нехватку, существует специальный анализ крови. Также потребуется сдать анализ крови на нехватку витаминов, потому что аминокислоты растворимы и в нашем организме взаимодействуют с витаминами группы В, А, С и Е.
При нехватке аминокислот у человека наблюдаются следующие симптомы:
- Слабость, сонливость.
- Снижение аппетита или полная его потеря.
- Выпадение волос, ухудшение состояния кожи.
- Задержка роста и развития у детей.
- Анемия.
- Снижение иммунитета, и как следствие низкая сопротивляемость к вирусам и инфекциям.
- Избыток аминокислот, также как и их нехватка ведет к нарушениям работы различных систем организма. Как правило негативные последствия от избытка аминокислот возможны только при дефиците селена и недостатке витаминов А, Е, С, В.
При избытке аминокислот в организме, могут возникнуть следующие проблемы: нарушение функции щитовидной железы, гипертония (переизбыток тирозина), проблемы с суставами (переизбыток гистидина), ранняя седина (переизбыток гистидина), повышается риск развития инфарктов и инсультов (переизбыток метионина).
Таблица. Применение аминокислот и их дозировка
Аминокислота | Применение | Дозировка (в качестве биодобавки для спортсменов) | Передозировка; Дефицит |
Гистидин | Лечит артрит, нервную глухоту, улучшает пищеварение, необходим младенцам и детям во время роста | 8-10 мг на 1 кг веса (минимум 1 г в сутки) | Психические расстройства, тревога, шизофрения, подверженность стрессам; Неизвестно. |
Лизин | Лечит герпес, добавляет энергию, способствует производству мышечного белка, борется с усталостью, поддерживает баланс азота в организме, важен для поглощения и сохранения кальция, способствует образованию коллагена | 12 мг на 1 кг веса | Повышение холестерина, диарея, камни в желчном пузыре; Нарушение выработки ферментов, снижение веса, снижение аппетита, ухудшение концентрации. |
Фенилаланин | Лечит депрессии, артрит, нервные расстройства, судороги, снимает напряжение с мышц, важен для производства нейротрансмиттеров серотонина и мелатонина | 1 мг на 1 кг веса | Повышенное артериальное давление, мигрени, тошнота, нарушение работы сердца и нервной системы. Не рекомендуется беременным и диабетикам; Вялость, слабость, задержка роста, нарушение функций печени. |
Метионин | Лечение печени, артрита, депрессий, ускоряет метаболизм жиров и улучшает пищеварение, антиоксидант, предотвращает накопление лишних жиров в сосудах и печени, выводит токсины | 12 мг на 1 кг веса | Возможна при дефиците витаминов группы В. Атеросклероз; Жировое перерождение печени, замедление роста, вялость, отеки, кожные болезни. |
Лейцин | Предотвращает атрофию мышц, природный анаболический агент, способствует заживлению ран и важен для выработки гормона роста | 16 мг на 1 кг веса | Повышает уровень аммиака; Неизвестно. |
Изолейцин | Заживляет раны, высвобождает гормон роста, регулирует сахар в крови, важен для формирования гемоглобина, отвечает за структуру мышц | 10-12 мг на 1 кг веса | Вызывает частое мочеиспускание, осторожно принимать при болезнях почек или печени; Неизвестно. |
Валин | Регулирует баланс азота, восстанавливает и способствует росту мышечной ткани | 16 мг на 1 кг веса | Покалывания кожи, галлюцинации, запрещен людям с болезнями печени или почек; Болезнь «кленового сиропа». |
Треонин | Важен для выработки коллагена, эластина, антител, поддерживает здоровье мышц, стимулирует рост, применяется для лечения психики | 8 мг на 1 кг веса | Неизвестно; Раздражительность, ослабление иммунитета. |
Триптофан | Важен для производства серотонина и мелатонина, необходим в период роста | 3,5 мг на 1 кг веса | Головокружение, мигрени, рвота, диарея; Может послужить причиной развития туберкулеза, рака, диабета, слабоумия. |
Аргинин | Отвечает за восстановление мышц, быстрое заживление ран и травм, выводит шлаки, укрепляет иммунитет | 0,4 мг на 1 кг веса | Болезни поджелудочной железы, печени; Снижение артериального давления, слабость, расстройство пищеварения. |
В зоне риска оказываются люди с генетическими нарушениями в процессе усвоения аминокислот, вегетарианцы, бодибилдеры и люди, которые просто не следят за своим питанием.
Аминокислоты в спортивном питании
Дополнительный прием аминокислот в последнее время стал очень популярен среди спортсменов, а особенно бодибилдеров. Без достаточного количества аминокислот, невозможен рост мышечной массы. Все дело в том, что наращивание мышечной массы представляет собой систематический процесс микроповреждений мышечных волокон и их заживления. И как раз для заживления мышечных волокон, и нужен белок, как строительный материал. Чтобы употреблять достаточное количество белка, спортсмену необходимо тщательно продумывать свой рацион, в условиях современного темпа жизни, это не всегда возможно и тут приходят на выручку протеиновые и аминокислотные комплексы (ВСАА).
ВСАА (от англ. Branched-chain amino acids — Аминокислоты с разветвленными цепочками) — комплекс, состоящий из трех незаменимых аминокислот:
- Лейцин (Leucine)
- Изолейцин (Isoleucine)
- Валин(Valine)
Лейцин, изолейцин и валин, составляют 35% всех аминокислот в мышечных тканях и принимают участие в процессах анаболизма и восстановления мышц, а также обладают антикатаболическим действием. ВСАА – незаменимые аминокислоты и не могут синтезироваться самостоятельно, поэтому человек вынужден получать их с пищей или специальными добавками в виде капсул или порошка. Попадая в организм ВСАА в первую очередь метаболируются в мышцах, и являются своеобразным «топливом» для роста мышечной массы. Этим они и отличаются от остальных 17 аминокислот. Это свойство помогает значительно улучшить спортивные показатели, улучшает самочувствие спортсмена после длительной тренировки. ВСАА безопасны для здоровья, при непревышении дозировки.
Следует отметить, что принимать протеин и аминокислотные комплексы, следует согласно инструкции на упаковке, не превышая суточную норму.
Резюмируя можно с уверенностью сказать, что аминокислоты – это то, что нужно нашему организму ежедневно для поддержания нормальной жизнедеятельности всех систем организма. Получить их можно не только из продуктов животного происхождения, но и из круп, бобовых и орехов. Если человек питается полноценно, не занимается бодибилдингом и у него нет каких-либо генетических отклонений, то дополнительный прием аминокислот в порошках и капсулах ему не требуется.
www.calorizator.ru
Сколько аминокислот входит в состав белка? Группы и виды аминокислот
Многие из нас знают, что белки необходимы организму, так как в них содержатся аминокислоты. Но далеко не все понимают, что собой представляют эти элементы и почему их наличие в рационе так важно. Сегодня мы выясним, сколько аминокислот входит в состав белка, как они классифицируются и какую функцию выполняют.
Что такое аминокислоты?
Итак, аминокислоты (аминокарбоновые к-ты) – это органические соединения, которые являются основным элементом, образующим структуру белка. Белки, в свою очередь, принимают участие во всех физиологических процессах человеческого организма. Они формируют кости, сухожилия, связки, внутренние органы, мышцы, ногти и волосы. Белки становятся частью организма в процессе синтеза аминокислот, пришедших с пищей. Следовательно, не белок является важным питательным веществом, а именно аминокислоты. И не все белки одинаково полезны, ведь у каждого из них свой уникальный состав этих самых кислот.
Сколько аминокислот входит в состав белка
Структура белков довольно сложна, рассмотрим ее на базовом уровне. Мы знаем, что аминокарбоновые кислоты являются своеобразными строительными блоками в здании под названием белок и в мегаполисе под названием человек. Однако не во всех белках есть именно те элементы, которые нам нужны. Если взглянуть на белок под микроскопом, можно увидеть цепочку из аминокислот, которые соединяются пептидными связями. Грубо говоря, звенья этой цепочки служат в нашем организме ремонтным и строительным материалом.
Удивительно, но было время, когда ученые не знали о том, сколько различных аминокислот входит в состав белков. Большинство из них были открыты в 19, а остальные в 20-м веке. Ученым понадобилось 119 лет, чтобы окончательно ответить на вопрос: «Сколько аминокислот входит в состав белка?» Строение каждой из них изучалось еще дольше.
На сегодняшний день известно, что для нормальной жизнедеятельности человеческого организма необходимо 20 протеиногенных аминокарбоновых кислот. Эту двадцатку часто называют мажорными кислотами. С точки зрения химии, их классифицируют по множеству признаков. Но простым обывателям наиболее близка классификация по способности кислот синтезироваться в нашем организме. По этому признаку аминокислоты бывают заменимыми и незаменимыми.
В этой классификации есть некоторые недостатки. К примеру, аргинин в некоторых физиологических состояниях считается незаменимым, но он может синтезироваться организмом. А гистидин восполняется в столь малых количествах, что его все-таки необходимо принимать с пищей.
Теперь, когда мы знаем, сколько видов аминокислот входит в состав белков, рассмотрим подробнее оба вида.
Незаменимые (эссенциальные)
Как вы уже поняли, эти вещества не могут самостоятельно синтезироваться организмом, поэтому их необходимо употреблять с едой. Основное количество незаменимых органических кислот содержится в животных белках. Когда в организме недостает того или иного элемента, он начинает забирать его с мышечной ткани. Этот класс состоит из 8 кислот. Познакомимся с каждой из них.
Лейцин
Эта кислота отвечает за восстановление и защиту мышечных тканей, кожных покровов и костей. Именно благодаря лейцину выделяется гормон роста. Кроме того, эта органическая кислота регулирует уровень сахара в крови и способствует сжиганию жиров. Она содержится в мясе, орехах, бобовых, нешлифованном рисе и зернах пшеницы. Лецитин стимулирует синтез белка, а значит, способствует наращиванию мышечной массы.
Изолейцин
Эта кислота ускоряет выработку энергии, поэтому ее так любят спортсмены. После изнурительных занятий она помогает быстрому восстановлению мышечных волокон. Изолейцин снимает так называемую крепатуру, принимает участие в образовании гемоглобина и регулирует количество сахара. Больше всего изолейцина содержится в мясе, рыбе, яйцах, орехах, горохе и сое.
Лизин
Данная аминокислота играет важную роль в работе иммунной системы. Ее главная задача – синтез антител, которые защищают наш организм от воздействия вирусов и аллергенов. Кроме того, лизин регулирует процесс обновления костной ткани и коллагена, а также гормоны роста. Эту органическую кислоту можно найти в таких продуктах питания, как: яйца, картофель, красное мясо, рыба и кисломолочные продукты.
Фенилаланин
Эта альфа-аминокислота отвечает за нормальную работу центральной нервной системы. Ее недостаток в организме приводит к приступам депрессии и хроническим болезням. Фенилаланин помогает нам концентрироваться и запоминать нужную информацию. Входит в состав препаратов, используемых при лечении психических расстройств, в том числе болезни Паркинсона. Положительно сказывается на работе печени и поджелудочной железы. Аминокислота содержится в: орехах, грибах, курице, молочных продуктах, бананах, абрикосах и топинамбуре.
Метионин
Мало кто знает, сколько аминокислот входит в состав белка, зато многим известно, что метионин активно сжигает жировые ткани. Но это далеко не все полезные свойства данной кислоты. Она влияет на выносливость и работоспособность человека. Если ее в организме недостаточно, это сразу можно понять по коже и ногтям. Метионин встречается в таких продуктах питания, как: мясо, рыба, семена подсолнечника, бобовые, лук, чеснок и кисломолочные продукты.
Треонин
Стремясь узнать, сколько аминокислот входит в состав белка, ученные открыли такое вещество, как треонин, одним из последних. А ведь оно очень даже полезно для человека. Треонин отвечает за все важнейшие системы человеческого организма, а именно за нервную, иммунную и сердечно-сосудистую. Первый признак его недостатка – проблемы с зубами и костями. Больше всего треонина человек получает из молочных продуктов, мяса, грибов, овощей и злаков.
Триптофан
Еще одно важнейшее вещество. Оно отвечает за синтез серотонина, который часто называют гормоном хорошего настроения. Недостаток триптофана можно обнаружить по нарушениям сна, аппетита. Данная кислота также регулирует функцию дыхания и артериальное давление. Она содержится преимущественно в: морепродуктах, красном мясе, птице, кисломолочных продуктах и пшенице.
Валин
Выполняет функцию восстановления поврежденных волокон и следит за обменными процессами в мышцах. При сильных нагрузках может оказывать стимулирующее действие. Также играет роль в умственной деятельности человека. Помогает при лечении печени и головного мозга от негативных воздействий алкоголя и наркотиков. Человек может получить валин из: мяса, грибов, сои, молочных продуктов и арахиса.
Примечательно, что 70% всех органических кислот в нашем организме занимают всего три аминокислоты: лейцин, изолейцин и валин. Поэтому они считаются самыми важными в обеспечении нормальной жизнедеятельности организма. В спортивном питании даже выделили специальный комплекс ВСАА, которые содержит именно эти три кислоты.
Продолжаем отвечать на вопрос о том, сколько мажорных аминокислот входит в состав белка, и переходим к заменимым представителям класса.
Заменимые
Главное отличие этой группы состоит в том, что все ее представители могут образовываться в организме путем эндогенного синтеза. Слово «заменимые» вводит многих в заблуждение. Поэтому часто неосведомленные люди говорят, что эти аминокислоты необязательно употреблять с пищей. Конечно же, это не так! Заменимые кислоты, так же как и эссенциальные, обязательно должны быть в составе каждодневного рациона. Они действительно могут образовываться из других веществ. Но происходит это только в случае, когда рацион составлен неправильно. Тогда часть полезных веществ и эссенциальных кислот затрачивается на воссоздание заменимых кислот. Следовательно, это не совсем благоприятно для организма. Разберем незаменимые кислоты, входящие в «мажорную двадцатку».
Аланин
Способствует ускорению метаболизма углеводов и выведению из печени токсинов. Встречается в таких продуктах питания, как: мясо, птица, яйца, рыба и молочные продукты.
Аспарагиновая кислота
Считается универсальным топливом для нашего организма, так как значительно улучшает обмен веществ. Встречается в молоке, тростниковом сахаре, птице и говядине.
Аспарагин
Пытаясь ответить на вопрос: «Сколько аминокислот входит в состав белка?», ученые в первую очередь открыли именно аспарагин. Было это в далеком 1806 году. Данная кислота принимает участие в улучшении работы нервной системы. Она содержится во всех животных белках, а также орехах, картофеле и злаках.
Гистидин
Является важным строительным элементом всех внутренних органов. Играет едва ли не ключевую роль в образовании красных и белых кровяных телец. Положительно влияет на иммунную систему и половую функцию. Из-за широкого спектра применения, запасы гистидина в организме быстро истощаются. Поэтому важно принимать его с пищей. Содержится в мясных, молочных и злаковых продуктах.
Серин
Стимулирует работу головного мозга и центральной нервной системы. Встречается в таких продуктах, как: мясо, соя, злаки, арахис.
Цистеин
Эта аминокислота в организме отвечает за синтез кератина. Без нее не было бы здоровых ногтей, волос и кожи. Находится в таких продуктах, как: мясо, яйца, красный перец, чеснок, лук и брокколи.
Аргинин
Говоря о том, сколько протеиногенных аминокислот входит в состав белков и какие функции они выполняют, мы убедились в том, что каждая из них важна для организма. Однако есть кислоты, которые, по мнению экспертов, считаются наиболее значимыми. К таковым относится аргинин. Он отвечает за здоровую работу мышц, суставов, кожного покрова и печени, а также укрепляет иммунитет и сжигает жиры. Аргинин часто используют бодибилдеры и те, кто желает похудеть, в составе добавок. В природном виде он встречается в мясе, орехах, молоке, злаках и желатине.
Глютаминовая кислота
Является важным элементом для здоровой работы головного и спинного мозга. Часто продается в виде добавки «Глутамат натрия». Встречается в яйцах, мясе, молочных продуктах, рыбе, моркови, кукурузе, помидорах и шпинате.
Глутамин
Нужен в белках для роста и поддержки мышц. Также является «топливом» головного мозга. Кроме того, глутамин выводит из печени все то, что поступает туда с нездоровой пищей. При термической обработке кислота денатурирует, поэтому, чтобы ее восполнить, нужно употреблять петрушку и шпинат в сыром виде.
Глицин
Помогает крови сворачиваться, а глюкозе — перерабатываться в энергию. Встречается в мясе, рыбе, бобовых и молоке.
Пролин
Отвечает за синтез коллагена. При недостатке в организме пролина начинаются проблемы с суставами. Встречается в основном в животных белках, поэтому является едва ли не единственным веществом, с нехваткой которого сталкиваются люди, не употребляющие мясо.
Тирозин
Отвечает за регулировку артериального давления и аппетит. При недостатке этой кислоты человек страдает быстрой утомляемостью. Чтобы таких проблем не было, нужно есть бананы, семечки, орехи и авокадо.
Продукты, богатые аминокислотами
Теперь вы знаете, сколько аминокислот входит в состав белка. Функции и место нахождения каждой из них вам тоже известны. Отметим главные продукты, употребляя которые, можно не переживать о сбалансированности питания в плане аминокислот.
Яйца. Отлично усваиваются организмом, дают ему большое количество аминокислот и обеспечивают белковую подкормку.
Молочные продукты. Способны обеспечить человека множеством полезных веществ, спектр которых, кстати говоря, не ограничивается органическими кислотами.
Мясо. Пожалуй, первый источник белка и входящих в него веществ.
Рыба. Богата на белок и отлично усвояема организмом.
Многие абсолютно уверены, что без продуктов животного происхождения нельзя обеспечить организм должным количеством белка. Это совершенно неверно. И доказательством тому является огромное количество вегетарианцев с прекрасной физической формой. Среди растительных продуктов главными источниками аминокислот являются: бобовые, орехи, крупы, семена.
Заключение
Сегодня мы узнали, сколько аминокислот входит в состав белка. Группы веществ и подробное описание их представителей помогут вам сориентироваться в составлении рациона здорового питания.
fb.ru
что это такое, полезные свойства и как их правильно принимать
© Yulia Furman — stock.adobe.com
Аминокислоты — органические вещества, состоящие из углеводородного скелета и двух дополнительных групп: аминной и карбоксильной. Последние два радикала обусловливают уникальные свойства аминокислот — они могут проявлять свойства как кислот, так и щелочей: первые — за счет карбоксильной группы, вторые — за счет аминогруппы.
Итак, мы выяснили, что такое аминокислоты с точки зрения биохимии. Теперь рассмотрим их влияние на организм и применение в спорте. Для спортсменов аминокислоты важны своим участием в протеиновом обмене. Именно из отдельных аминокислот строятся протеины для роста мышечной массы нашего тела — мышечная, скелетная, печеночная, соединительная ткани. Помимо этого, некоторые аминокислоты напрямую участвуют в обмене веществ. К примеру, аргинин участвует в орнитиновом цикле мочевины — уникальном механизме обезвреживания аммиака, образующегося в печени в процессе переваривания белков.
- Из тирозина в коре надпочечников синтезируются катехоламины — адреналин и норадреналин — гормоны, функция которых — поддержание тонуса сердечно сосудистой системы, мгновенная реакция на стрессовую ситуацию.
- Триптофан — предшественник гормона сна — мелатонина, вырабатывающегося в шишковидном теле головного мозга — эпифизе. При недостатке этой аминокислоты в рационе процесс засыпания усложняется, развивается бессонница и ряд других заболеваний, ею обусловленных.
Перечислять можно долго, однако остановимся на аминокислоте, значение которой особенно велико для спортсменов и людей, умеренно занимающихся спортом.
Для чего нужен глютамин
Глютамин — аминокислота, лимитирующая синтез протеина, из которого состоит наша иммунная ткань — лимфатические узлы и отдельные образования лимфоидной ткани. Значение этой системы переоценить трудно: без должного сопротивления инфекциям ни о каком тренировочном процессе говорить не приходится. Тем более, что каждая тренировка — не важно, профессиональная или любительская — это дозированный стресс для организма.
Стресс — необходимое условие, чтобы сдвинуть с места нашу «точку равновесия», то есть вызвать определенные биохимические и физиологические изменения в организме. Любой стресс — это цепь реакций, мобилизующих тело. В промежуток, характеризующий регресс каскада реакций симпатоадреналовой системы (а именно они и представляют собой стресс), происходит снижение синтеза лимфоидной ткани. По этой причине процесс распада превышает скорость синтеза, а значит, иммунитет ослабевает. Так вот, дополнительный прием глютамина сводит к минимуму этот крайне нежелательный, но неизбежный эффект физической нагрузки
Незаменимые и заменимые аминокислоты
Чтобы понять, для чего нужны незаменимые аминокислоты в спорте, необходимо иметь общие представления о белковом обмене. Потребленные человеком белки на уровне желудочно-кишечного тракта обрабатываются ферментами — веществами, расщепляющими пищу, которую мы употребили.
В частности, белки распадаются сперва до пептидов — отдельных цепочек аминокислот, не имеющих четвертичной пространственной структуры. И уже пептиды распадутся на отдельные аминокислоты. Те, в свою очередь, усваиваются организмом человека. Это значит, что аминокислоты всасываются в кровь и только с этого этапа могут быть использованы в качестве продуктов для синтеза белка тела.
Забегая вперед скажем, что прием отдельных аминокислот в спорте сокращает этот этап — отдельные аминокислоты будут сразу же всасываться в кровь и процессы синтеза, а также биологический эффект аминокислот наступят быстрее.
Всего существует двадцать аминокислот. Чтобы процесс синтеза белка в теле человека стал возможным в принципе, в рационе человека должен присутствовать полный спектр — все 20 соединений.
Незаменимые
Вот с этого момента и появляется понятие незаменимости. К незаменимым аминокислотам относятся те, которые наше тело не способно синтезировать самостоятельно из других аминокислот. А это значит, что появится им, кроме как из продуктов питания, неоткуда. Таких аминокислот насчитывается 8 плюс 2 частично-заменимые.
Рассмотрим в таблице, в каких продуктах содержится каждая незаменимая аминокислота и какова ее роль в организме человека:
Название | В каких продуктах содержится | Роль в организме |
Лейцин | Орехи, овес, рыба, яйца, курица, чечевица | Снижает содержание сахара в крови |
Изолейцин | Нут, чечевица, кешью, мясо, соя, рыба, яйца, печень, миндаль, мясо | Восстанавливает мышечную ткань |
Лизин | Амарант, пшеница, рыба, мясо, большинство молочных продуктов | Принимает участие в усвоении кальция |
Валин | Арахис, грибы, мясо, бобовые, молочные продукты, многие зерновые | Принимает участие в обменных процессах азота |
Фенилаланин | Говядина, орехи, творог, молоко, рыба, яйца, разные бобовые | Улучшение памяти |
Треонин | Яйца, орехи, бобы, молочные продукты | Синтезирует коллаген |
Метионин | Фасоль, соя, яйца, мясо, рыба, бобовые, чечевица | Принимает участие в защите от радиации |
Триптофан | Кунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, индейка, мясо, рыба, сушенные финики | Улучшает и делает сон глубже |
Гистидин (частично-заменимая) | Чечевица, соевые бобы, арахис, тунец, лосось, говяжье и куриное филе, свиная вырезка | Принимает участие в противовоспалительных реакциях |
Аргинин (частично-заменимая) | Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахис | Способствует росту и восстановлению тканей организма |
В достаточном количестве аминокислоты содержатся в животных источниках белка — рыбе, мясе, птице. При отсутствии таковых в рационе весьма целесообразен прием недостающих аминокислот в качестве добавок спортивного питания, что особенно актуально для спортсменов-вегетарианцев.
Основное внимание последним стоит обратить на такие добавки, как ВСАА — смесь лейцина, валина и изолейцина. Именно по этим аминокислотам возможна «просадка» в рационе, не содержащем животных источников белка. Для спортсмена (как профессионала, так и любителя) это абсолютно не допустимо, так как в долгосрочной перспективе приведет к катаболизму со стороны внутренних органов и к заболеваниям последних. В первую очередь страдает от недостатка аминокислот печень.
© conejota — stock.adobe.com
Заменимые
Заменимые аминокислоты и их роль рассмотрим в таблице ниже:
Название | Роль в организме |
Аланин | Принимает участие в глюконеогенезе печени |
Пролин | Отвечает за составление прочной структуры коллагена |
Левокарнитин | Поддерживает кофермент А |
Тирозин | Отвечает за ферментативную активность |
Серин | Отвечает за построение природных белков |
Глютамин | Синтезирует протеины мышц |
Глицин | Снижает напряжение т уменьшает агрессивность |
Цистеин | Положительно влияет на текстуру и состояние кожи |
Таурин | Оказывает метаболическое действие |
Орнитин | Принимает участие в биосинтезе мочевины |
Что происходит с аминокислотами и протеинами в вашем теле
Аминокислоты, попавшие в кровоток, в первую очередь распределяются по тканям тела, где в них есть наибольшая потребность. Если у вас есть «просадка» по определенным аминокислотам, прием дополнительного количества белка, богатого ими, или прием дополнительных аминокислот, будет особенно полезен.
Синтез белка происходит на клеточном уровне. В каждой клетка есть ядро — самая важная часть клетки. Именно в ней происходит считывание генетической информации и ее воспроизводство. По сути, вся информация о строении клеток закодирована в последовательности аминокислот.
Как выбрать аминокислоты рядовому любителю, умеренно занимающемуся спортом 3-4 раза в неделю? Никак. Они ему просто не нужны.
Более важны для современного человека следующие рекомендации:
- Начать питаться регулярно в одно и то же время.
- Сбалансировать рацион по белкам жирам и углеводам.
- Убрать из рациона фастфуд и некачественную пищу.
- Начать употреблять достаточное количество воды — 30 мл на килограмм массы тела.
- Отказаться от рафинированного сахара.
Эти элементарные манипуляции принесут гораздо больше, чем добавление в рацион каких бы то ни было добавок. Более того, добавки без соблюдения указанных условий будут абсолютно бесполезны.
Зачем знать, какие аминокислоты вам нужны, если вы питаетесь непонятно чем? Откуда вы знаете, из чего сделаны котлеты в столовой? Или сосиски? Или что за мясо в котлете в бургера? Про начинку для пиццы вообще промолчим.
Поэтому прежде, чем делать вывод о потребности в аминокислотах, нужно начать питаться простыми, чистыми и полезными продуктами и выполнить описанные выше рекомендации.
То же самое касается дополнительного приема белка. Если в вашем рационе присутствует белок, в количестве 1,5- 2 г на килограмм массы тела, никакой дополнительный белок вам не нужен. Лучше потратить деньги на покупку качественных продуктов питания.
Важно также понимать, что протеин и аминокислоты — это не фармакологические препараты! Это всего лишь добавки спортивного питания. И ключевое слово здесь — добавки. Добавляют их по потребности.
Чтобы понять, есть ли потребность, нужно контролировать свое питание. Если вы уже прошли описанные выше шаги и поняли, что добавки все-таки необходимы, первое, что вы должны сделать — пойти в магазин спортивного питания и выбрать соответствующий продукт в соответствии с финансовыми возможностями. Единственное, чего не стоит делать новичкам — это покупать аминокислоты с натуральным вкусом: пить их будет затруднительно по причине чрезвычайной горечи.
Вред, побочные эффекты, противопоказания
Если у вас есть заболевания, характеризующиеся непереносимостью одной из аминокислот, вы об этом знаете с рождения, так же, как и ваши родители. Этой аминокислоты нужно избегать и дальше. Если же этого нет, говорить о вреде и противопоказаниях добавок нет смысла, поскольку это полностью натуральные вещества.
Аминокислоты — составляющая часть белка, белок — привычная часть рациона человека. Все то, что продается в магазинах спортивного питания — не является фармакологическими препаратами! Только дилетанты могут говорить о каком-то вреде и противопоказаниях. По той же причине нет смысла рассматривать такое понятие, как побочные эффекты аминокислот — при умеренному потреблении никаких негативных реакций быть не может.
Трезво подходите к своему рациону и спортивным тренировкам! Будьте здоровы!
Оцените материалНаучный консультант проекта. Физиолог (биологический факультет СПБГУ, бакалавриат). Биохимик (биологический факультет СПБГУ, магистратура). Инструктор по хатха-йоге (Институт управления развитием человеческих ресурсов, проект GENERATION YOGA). Научный сотрудник (2013-2015 НИИ акушерства, гинекологии и репродуктологии им. Отта, работа с маркерами женского бесплодия, анализ биологических образцов; 2015-2017 НИИ особо чистых биопрепаратов, разработка лекарственных средств) Автор и научный консультант сайтов по тематике ЗОЖ и науке (в области продления жизни) C 2019 года научный консультант проекта Cross.Expert.
Редакция Cross.Expert
cross.expert
Протеин и Аминокислоты — применение с научной точки зрения
Вся тренировочная работа в зале пойдет насмарку, если недополучать белки. Без этого важнейшего питательного вещества не набрать и не сохранить «массу». В общем, ценность белков ни у кого не вызывает сомнений, однако практика показывает, что на удивленье мало культуристов-любителей разбирается в тонкостях белкового питания. Спросите любого из них, что он знает об особенностях белкового питания, и лучший ответ, который ты получишь, это то, что минимальный уровень потребления — полтора грамма на килограмм веса (или два, а может четыре?).
Так что же нам нужно знать в первую очередь? То, что на усваиваемость, а следовательно полезность белков влияют много факторов — разные виды перевариваются пищеварительной системой по-разному. Например, одни белки идут на строительство мышц, другие сгорают, обеспечивая организм энергией. Но это еще не все. От качества протеинов, от времени потребления и промежутков между приемами пищи зависит их усвоение. Итак, в науке потребления белков вопрос номер один для атлетов — выбор «правильных» продуктов. Об этом эта статья.
Если вкратце, то белок — это длинные цепи аминокислот. А что такое аминокислоты, вы знаете? Это первичные «кирпичики» животного мироздания. Образно говоря, его «атомы». В целом все просто. Вы едите животный или растительный белок в виде длиннющих «сцепок» разных аминокислот. В организме цепи распадаются, а затем освобожденные аминокислоты «скрепляются» в новую комбинацию — это и будет новый «человеческий» белок. Не надо думать, что речь идет только о мышечном белке. Ваши ногти и волосы тоже состоят из белка, а значит и им нужны аминокислоты для обновления состарившихся белковых молекул. Однако следует заметить, что большая часть съеденного вами белка и впрямь расходуется на нужды мышечной ткани. (Следует уточнить, что только часть аминокислот идет на мышечное «строительство». Из других вырабатываются энергетические энзимы. Следовательно, чем энзимов больше, тем выше энергетический потенциал мышц. Что немаловажно для спортсмена.)
Аналогично случаю с витаминами, многие аминокислоты организм умеет «производить» сам. Это защитный механизм природы, оберегающий человека в периоды голодания. Увы, речь идет только о считанных аминокислотах, самых важных для поддержания жизни. Если говорить о мышечном росте, то из 20-ти остро нужных атлету аминокислот организм способен «произвести» только половину. Остальное надо в обязательном порядке получать с пищей. Вот и выходит, что половина вашего успеха и впрямь приходится на правильное питание. Как бы фанатично вы ни занимались, без тех самых аминокислот, которые можно «усвоить» только за обеденным столом, мышцы ни за что не вырастут!
Если точно по науке, то всего таких аминокислот девять: лизин, триптофан, метионин, валин, фенилаланин, лейцин, изолейцин, треонин и аргинин.
Ну как? Теперь вы понимаете, сколько подводных камней в атлетическом питании? Ведь на свете попросту нет какого-то одного продукта, который бы содержал всю нужную вам «девятку». Получается, вам нужны самые разные виды животных и растительных протеинов? Напрашивается вопрос, да как же во всем этом разобраться?!
Эх, ребята, если бы думать надо было только о составе аминокислот! А еще важен их баланс, т.е. каких-то аминокислот должно быть больше, каких-то меньше. А еще важно качество белка. (Есть белок, который усваивается из рук вон плохо.) Ученые, чтобы не запутаться, выдумали целую шкалу критериев. Вот они:
- Биологическая ценность продукта. Она определяется полученным и усвоенным организмом азотом, выраженным в процентах. Белковая пища с высоким содержанием азота, как правило, плохо переваривается, но зато, если уж что-то усвоится, то с максимальной пользой для мышечного роста.
- Способность к усвоению. Этот показатель — самый объективный индикатор общей ценности протеина, демонстрирующий, какая его часть пойдет на строительство новых клеток.
- Относительная питательная ценность. Она высчитывается как отношение прироста мышечной массы к количеству протеина, поступившего в организм за 10 дней. Этот параметр ученые определили на основе опытов с крысами. Чем меньше уходит протеина на весовую единицу прироста, тем выше величина относительной питательной ценности, и, тем, следовательно, выше пищевая ценность протеина. Это сравнительно простой метод оценки, однако он очень полезен, когда нужно сравнить пищевую ценность различных продуктов.
- Уточненный показатель ценности белков по содержанию аминокислот. Этот индикатор, введенный в оборот в 1985 году, часто используется вместо предыдущего показателя (относительной питательной ценности), выведенного, повторим, из экспериментов над крысами, что делает его не совсем подходящим для расчета рационального питания человека. «Уточненный показатель» отражает ценность белкового продукта на основе общего содержания незаменимых аминокислот, их соотношения и биологической доступности. Правда, тут есть одна проблема. Максимальный индекс — одна единица — изначально был присвоен сое. Ну а как быть с молочной сывороткой? В те годы она выпала из поля зрения ученых, ну а она является более ценным продуктом, чем соя.
Кстати говоря, яйца и молоко — для спортсмена источники протеинов высшего качества, за ними следуют рыба и говядина, затем птица, свинина и некоторые растительные продукты. Нельзя забывать, что, хотя мясо и содержит большое количество белка, в нем также много вредных жиров (исключение — мясо цыпленка со снятой кожей). А вот рыба — просто идеальна; кроме белков, она содержит очень полезные жирные кислоты омега-3 (правда, в некоторых сортах рыбы их практически нет).
Растительная пища, как правило, содержит лишь некоторые «атлетические» аминокислоты: лизин, метионин, триптофан и треонин. И то в незначительных количествах. Например, фасоль и другие, бобовые небогаты метионином (на заметку культуристам вегетарианцам!). Значит, ценность растительных белков невелика? Ни в коем случае! Например, многие бобовые обладают великолепно сбалансированным набором аминокислот, хотя еще совсем недавно их пищевая ценность ставилось учеными под вопрос. Вообще-то растительные белки особенно полезны в комбинации друг с другом. Например, чашку вареной фасоли полезно заесть большим куском хлеба грубого помола.
Пора познакомится еще с одним показателем ценности белковых продуктов, биологической доступностью. Он отражает то количество питательных веществ, которые организм способен извлечь из полученной пищи и использовать в своих нуждах. Вот пример. Одно дело отборная говядина, и совсем другое — старая, с обилием хрящевой и соединительной ткани. Конечно же, и хрящи содержат аминокислоты, однако переваривает хрящи наш кишечник с большим трудом. Так что, большая часть аминокислот так и останется вне переваренной хрящевой ткани и будет выведена из организма.
А что случится, если в вашем рационе хронически недостает одной или нескольких незаменимых аминокислот? В этом случае ВЕСЬ белок, который вы съедаете, будет хуже усваиваться? Однозначно нет! Как раз на такой случай наш организм содержит примерно 450 г белковых излишков, никак не задействованных в активных биохимических процессах. Хранилище «запасных» протеинов — печень и кровь. Благодаря белковым резервам, нам не надо получать все девять незаменимых аминокислот с каждым приемом пищи. Например, организм может вполне безболезненно ждать поступление одной или нескольких дефицитных аминокислот в течение целых суток.
Существует мнение, что баланс аминокислот куда важнее их общего количества. На первый взгляд это кажется полной чепухой. В самом деле, ну не может горстка какого-то продукта, пусть и идеально сбалансированного по аминокислотному составу, заменить гору пищи, обычно поедаемую качком. Однако вот вам конкретный пример: вегетарианец Джим Моррисон. Это профессиональный культурист с огромной мышечной массой, по убеждению противник заклания и поедания животных. Можно было бы подумать, что для мышечного роста ему приходится съедать огромные количества растительной пищи. Но нет, Моррисон всегда довольствовался малыми порциями, но! идеально сбалансированными по составу аминокислотами. В частности, примером такого «идеального» блюда является комбинация обезжиренной муки из земляных орехов и коричневого риса.
Эффективность аминокислот в организме определяется, как считают ученые, не только их ценностью, доступностью и сбалансированностью, но и временем усвоения. Например, сывороточный протеин вызывает быструю, кратковременную концентрацию аминокислот в крови. Почему? Потому что сыворотка хорошо растворяется и переваривается, быстро уходит в кишечник, следовательно, энзимам легко расщепить ее на отдельные аминокислоты. С казеином — картина другая. Этот плотный продукт, задерживаясь в желудке, переваривается постепенно, и соответственно аминокислоты медленно концентрируются в крови. Значит, казеин бесполезен? Нет, просто если сыворотка действует практически мгновенно, то казеин — протеин замедленного действия.
В одном из научных экспериментов испытуемым, набранным из здоровых молодых мужчин в возрасте двадцати четырех лет, не занимающихся спортом, давали либо молочную сыворотку, либо казеин. В первой группе сразу же после приема сыворотки синтез белка кратковременно возрос на 68%. При этом некоторое количество аминокислот окислилось в ходе энергетических процессов. Проще говоря, организм «сжег» их ради извлечения энергии. Во второй группе рост синтеза белка едва достиг 31%, зато окислялось куда меньше аминокислот. В итоге в абсолютном пересчете из одинакового количества белка больше усвоилось казеина, чем сыворотки.
Какой вывод можно сделать из этого исследования? Если вам нужно быстро в течение часа «подхлестнуть» синтез белка, тогда ваш выбор — сывороточный протеин (правда, напомним, его действие ограничивается двумя-тремя часами). Растянуть усвоение белка можно с помощью казеина.
АМИНОКИСЛОТЫ: КРАТКОЕ ДОСЬЕ
Форма | Функции | Плюсы | Минусы |
«Свободные» аминокислоты | Не требуют переваривания; быстрое усвоение | Можно принимать отдельные виды аминокислот большими дозами (например, снижающие мышечный катаболизм) | Сравнительно высокая цена |
Гидроли-зированный протеин | Ускоряет усвоение | Предварительная обработка | Содержит пептиды с укороченной цепочкой, которые повышают уровень гормонов (ИГФ-1) |
Аминокислоты с разветвленной цепочкой | Усиливают производство аммиака во время упражнений, способствуя формированию аланина из глюкозы | Могут переходить в энергию, предотвращая мышечный катаболизм | Относительно дорогой способ энергетического «питания» мышц |
Ди-/Трипептиды | 2-молекульные и 3-молекульные белковые цепочки, лучше усваиваются организмом | Увеличивают уровень анаболического гормона ИГФ-1 (повышают эффективность использования протеина организмом) | Высокая цена |
Растительные протеины | Протеины, предназначенные для вегетарианцев и любителей растительной пищи (бобы, орехи) | Невысокая цена, низкое содержание жиров, богатые антиоксидантами, клетчаткой | Неполное содержание аминокислот (за исключением сои), необходимо комбинировать с недостающими аминокислотами |
Животные белки | Молочные продукты, птица, яйца, мясо (говядина), богаты незаменимыми аминокислотами | Как правило, содержат все незаменимые аминокислоты (за исключением желатина) | Богатые насыщенными жирами |
АМИНОКИСЛОТЫ: ВЫМЫСЕЛ И ПРАВДА.
Какие аминокислоты лучше — «свободные» или «связанные»?
Вы, конечно, уже слышали последнюю новость спортивного питания. Якобы, дипептиды и трипептиды (короткие цепочки из двух или трех молекул аминокислот) лучше усваиваются мышцами атлета, чем привычные аминокислоты в свободной форме (состоящие из отдельных разрозненных молекул). Напомним, что получить дипептиды и трипептиды нелегко, нужны супер-технологии. Отсюда печальный итог: недоступная цена. И что же выходит? Мы все остались на бобах? Наш удел малоэффективные свободные аминокислоты? Нет, не надо спешить. Свободные аминокислоты — тоже неплохой продукт, который очень даже хорошо принимает наша мускулатура. Залог высокой результативности такого продукта в том, что он усваивается без пищеварения. Аминокислоты буквально пролетают через желудок, а потом в тонком кишечнике немедленно просачиваются через его стенки в кровь. В смысле скорости действия свободные аминокислоты дадут сто очков вперед любому протеину. Другое дело, что в дозах приема имеется большая путаница. Производитель обычно рекомендует 4-6 капсул, а вот практики настаивают на огромных количествах — до 10-15 г на прием. Хотим заверить вас, что аминокислоты не подведут в любых дозах.
Аминокислоты — лучшие друзья мышечной ткани.
Когда все энергетические запасы потрачены, организм берется за крайний источник — мышечную ткань. Суть в том, что она содержит аминокислоты с разветвленными цепями (лейцин, изолейцин и валин), а они-то как раз способны «конвертироваться в чистую биологическую энергию. Но это, же означает разрушение мышц! — подумаете вы. Правильно! Впрочем, выход есть. Надо прямо во время тренинга принимать данные аминокислоты в свободной форме.
Любопытно, что вместо трех аминокислот можно принимать один лейцин, правда, в больших дозах — до 8 г. Эффект тот же. (Кстати, вместо лейцина можно принимать его метаболическую форму НМВ в гораздо меньших дозах — выйдет дешевле.)
Заблокировать разрушение мышц во время тренинга способна и аминокислота глютамин. Но вот ее вам потребуется крайне много — до 14-15 г.
Осторожно — горячо!
Ценность протеинов страдает при тепловой обработке — за счет того, что под действием высоких температур многие аминокислоты разрушаются. Первым распадается цистин. Лизин и глютамин также не любят избыточное тепло; они спекаются в молекулярные соединения, которые, практически, не усваиваются. Часто при перегреве молекулы сахара слипаются с молекулами протеинов — в результате получается знакомая всем румяная корочка. Но как раз ее-то организм и не усваивает. Или еще пример: при сильной жарке аминокислоты превращаются в т.н. D-аминокислоты, которые принципиально не годятся для мышечного роста. Значит ли это, что мясо надо есть сырым? Нет и еще раз нет! В строгом смысле слова тепловая обработка улучшает биологическую доступность протеинов. Главное, не переборщить с температурой и длительностью приготовления белкового блюда.
АМИНОКИСЛОТЫ: КРАТКИЙ СПРАВОЧНИК
Незаменимые аминокислоты — должны поступать в организм с пищей или в составе добавок?
1. Гистин:
- незаменимая аминокислота для детей
- не рекомендуется применять в виде пищевых добавок (подавляет иммунную систему у людей, подвергающихся воздействию солнечных лучей)
- предшественник нейротрансмиттера гистамина, дипептида карнозина и гомокарнозина
2. Изолейцин:
- аминокислота с разветвленной цепочкой, легко усваивается и перерабатывается в энергию для мышечных тканей
- препятствует распаду мышечных тканей.
3. Лейцин:
- аминокислота с разветвленной цепочкой, хороший источник энергии
- препятствует распаду мышечных протеинов
- хорошо усваивается в качестве питательного вещества для мозга, соперничая с тирозином, фенилаланином, триптофаном (строительное вещество для нейротрансмиттеров) и другими аминокислотами с разветвленной цепочкой
- хорошо заживляет кожные раны, способствует сращиванию костей при переломах
4. Лизин:
- снижение уровня лизина в организме замедляет синтез белка, отчего страдают мышечные и соединительные ткани
- подавляет жизнедеятельность вирусов и препятствует внезапным обострениям вируса герпеса
- необходим для синтеза карнитина
- способствует росту костной ткани, поскольку участвует в образовании коллагенов — протеинов, из которых состоят кости,
strongbody.md