Углеводы как органические молекулы
Углеводы – это органические молекулы, которые содержат углерод, водород и кислород в мольном соотношении 1:2:1. Элементы в них объединяются в карбонильную и карбоксильную группы. Их общая формула (CH2O) n.
Так как первые изученные углеводы содержали водорода и кислорода столько же, сколько и в молекуле воды, они и получили своё название (углерод + вода). Вместе с тем есть молекулы, у которых соотношение указанных в формуле химических элементов иное, а некоторые, кроме того, содержат атомы азота, фосфора или серы, но подробная классификация углеводов рассматривается ниже. Источником углеводов является растения, там они синтезируются в процессе фотосинтеза.
Так как углеводы содержат много углеводородных связей (C-H), высвобождающих энергию при окислении, они хорошо подходят для хранения энергии. Эти вещества входят в состав всех живых организмов. В клетках животных их содержание не превышает 10 % сухой массы, в клетках растений их значительно больше – до 90 %.
Классификация углеводов
Углеводы существуют в нескольких формах: моносахаридов, олигосахаридов (в том числе дисахаридов) и полисахаридов.
Углеводы моносахариды
Самые простые углеводы – моносахариды (греч. μόνος «единственный», лат. saccharum «сахар»), или простые сахара. Могут включать от 3 атомов углерода, но те, что играют роль в запасе энергии, содержат 6 атомов углерода: C6H12O6 или (CH2O)6.
Структура моносахаридов.Свойства моносахаридов:
- бесцветность;
- твёрдость кристаллической решётки;
- хорошая растворимость в воде;
- способность к кристаллизации;
- сладкий вкус,
- представление в форме α и β-изомеров.
По количеству атомов углерода в составе молекул, моносахариды делятся на несколько групп:
- триозы (C3),
- тетрозы (C4),
- пентозы (C5),
- гексозы (C6),
- гептозы (C7).
Важнейшими из них являются пентозы и гексозы.
Из тетроз важной является эритроза – один из промежуточных продуктов фотосинтеза растений.
Широко распространены в живом мире пентозы (пятиуглеродные сахара). Эта группа углеводов включает такие важные вещества как
Из гексоз наиболее распространены глюкоза, фруктоза и галактоза. Это стериоизомеры с общей формулой C
Глюкоза – виноградный сахар, в свободном состоянии встречается как в растениях, так и в организмах животных. В зависимости от ориентации карбонильной группы (C = O) при замкнутом кольце, глюкоза может существовать в двух различных формах: альфа (α) и бета (β). У α-глюкозы гидроксильная группа расположена под плоскостью кольца при первом атоме углерода, а у β-глюкозы над плоскостью. Глюкоза — это:
- важнейший источник энергии для всех видов работ в клетке;
- мономер многих олиго- и полисахаридов;
- необходимый компонент крови. Снижение её концентрации ведёт к нарушению работы нервных и мышечных клеток, что может сопровождаться судорогами и обмороком. Уровень содержания глюкозы в крови регулируется нервно-гуморальной системой;
- составная часть почти всех тканей и органов, там она регулирует осмотическое давление;
- помощник печени в выполнении барьерной роли против токсинов.
Фруктоза тоже очень распространена в природе. Отличается от глюкозы положением карбонильного углерода (C = O). Служит мономером олигосахаридов. Большая её часть находится в плодах, поэтому её ещё называют фруктовым сахаром. Много фруктозы в сахарной свёкле и мёде.
Путь её распада в организме короче, что имеет большое значение в питании больных сахарным диабетом, когда глюкоза слабо усваивается клетками.
Мёд, несмотря на многочисленные советы употреблять его вместо сахара, не является идеальным источником углеводов. Он содержит сахар в чистом виде.
Мёд образуется при ферментативном гидролизе цветочного нектара в пищеварительном тракте пчелы и содержит примерно равные количества свободных глюкозы, фруктозы и дисахарид сахарозу.
Сахар, приносящий пользу, находится в молодых овощах, ягодах, фруктах. Вредный для питания сахар – булочки, торты, пирожные, печенья, сладкие газировки, мороженое. В день в идеале можно съедать 50 г сладкого во время обеда или на полдник в качестве десерта.
Галактоза — пространственный изомер глюкозы, отличающийся только расположением гидроксильной группы и водорода около четвёртого атома углерода. Содержится в животных, растениях и некоторых микроорганизмах. Она входит в состав лактозы — молочного сахара, а также в состав некоторых полисахаридов, например лактулозы. В печени и в других органах галактоза превращается в глюкозу.
Различия в структуре этих изомеров влияют на их функции. Их можно различить уже на вкус: фруктоза, например, намного слаще глюкозы. От строения их кольца или цепи зависит и способность быть частью какого-либо полимера.
Углеводы олигосахариды
Олигосахариды (от греч. ὀλίγος — немногий) — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до 10) молекулами моносахаридов. В зависимости от числа молекул моносахаридов, различают: дисахариды, трисахариды, тетрасахариды и т. д. Наиболее распространены среди них дисахариды. Свойства олигосахаридов:
- растворяются в воде;
- мало растворяются в низших спиртах;
- почти не растворяются в других обычных растворителях;
- белые или бесцветные;
- кристаллизуются, но не все, некоторые существуют в форме некристаллических сиропов;
- их сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов.
Связь, образующаяся между двумя моносахаридами, называется гликозидной (тип ковалентной связи, реакция конденсации).
Образование гликозидных связейУглеводы дисахариды
В растениях и многих других организмах моносахариды трансформируется в дисахариды — транспортную форму, предназначенную для удобства перемещения внутри организма. В таком виде она труднее расщепляется и может быть доставлена в нужные места.
Дисахариды, образуется путём связывания двух моносахаридов (др. греч. δuο — два и σaκχαρον — сахар) гликозидной связью. Ферменты, способные разорвать эту связь присутствуют, как правило, только в тканях, которые используют глюкозу. Транспортные формы различаются в зависимости от того из каких моносахаридов состоят данные дисахариды. Кроме глюкозы они могут включать фруктозу и галактозу.
При соединении остатка глюкозы с её структурным изомером фруктозой образуется дисахарид сахароза
Это привычный нам бытовой сахар, который в промышленности вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свёклы (корнеплоды — до 20%).
Уборка сахарного тростникаАвтор: Siebrand
Связывание глюкозы со стериоизомером галактозой приводит к появлению дисахарида
Мальтоза, или солодовый сахар — дисахарид, состоящий из двух остатков глюкозы. Концентрируется в прорастающих семенах злаков, в томатах и нектаре некоторых растений. Это основной структурный элемент крахмала и гликогена. Мальтоза гидролизируется на две молекулы глюкозы под действием фермента мальтазы.
Углеводы полисахариды
Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (нескольких десятков и более) молекул моносахаридов. Полисахариды (от греч. полис — много) могут включать остатки одинаковых или разных моносахаридов.
Свойства полисахаридов:
- не растворяются или плохо растворяются в воде;
- не образуют ясно оформленных кристаллов;
- не имеют сладкого вкуса.
Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство из них не способны переварить целлюлозу или другие полисахариды, такие как хитин. Эти углеводы могут усваиваться только некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.
Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, так как они улучшают пищеварение и способствуют лучшей перистальтике кишечника. Основная функция пищевых волокон — способствовать всасыванию других питательных веществ.
Полисахариды различаются между собой составом мономеров, длиной и степенью разветвленности цепей. Они могут иметь линейную неразветвленную (целлюлоза, хитин), разветвленную (гликоген) и смешанную структуру (крахмал представляет собой смесь полисахаридов — примерно на 80 % (по массе) он состоит из разветвленного амилопектина и на 20 % из линейного полисахарида амилозы).
В функциональном отношении различают полисахариды резервного, структурного и защитного назначения. Типичные резервные полисахариды — крахмал и гликоген. К структурным полисахаридам относят целлюлозу (клетчатку). Защитную функцию у животных обеспечивают гепарин и гиалуроновая кислота.
Крахмал и гликоген
Крахмал и гликоген запасают метаболическую энергию.
Крахмал (C6H10O5)n — полимер, мономером которого является α-глюкоза. Состоит из смеси других полисахаридов — амилозы и амилопектина. Амилоза имеет вид длинной цепочки, связанной в спираль, именно такая конфигурация обеспечивает синюю окраску растворимого крахмала при добавлении йода. Амилопектин — древовидно разветвлённая цепь, он в присутствии йода окрашиваются в коричневый цвет. Крахмал — основной резервный углевод растений, являющийся одним из продуктов фотосинтеза. Накапливается в хлоропластах листьев, семенах, клубнях, корневищах, луковицах, откладывается в клетках в виде крахмальных зёрен в специальных органеллых — амилопластах. Содержание крахмала:
- в зерновках риса — до 86%;
- пшеницы — до 75%;
- в клубнях картофеля — до 25%.
Крахмал — основной углевод пищи человека, его расщепляет фермент амилаза. Крахмальные зёрна практически не растворяются в воде, но амилоза набухает при её нагревании, тогда как амилопектин не изменяется даже при очень длительном кипячении.
Гликоген (C6H10O5)n — полисахарид, состоящий из 30 000 остатков α-глюкозы. Его цепочки ветвятся сильнее, чем у крахмала. По типу ветвления он похож на компонент крахмала амилопектин, поэтому его часто называют животным крахмалом. Он не даёт синего окрашивания при контакте с йодом. Гликоген — это запасной углевод животных. Накапливается в печени (до 20%) и в мышцах (4%), в небольшом количестве он найден в почках, клетках мозга и лейкоцитах крови. Чаще всего используется как источник глюкозы для восполнения её запасов в крови. Есть гликоген и в клетках грибов, в том числе и дрожжей. В отличие от крахмала гликоген растворим при комнатной температуре.
Целлюлоза
Целлюлоза — полимер, в котором мономер глюкоза соединяется между собой по типу β. Это основной структурный полисахарид клеточной стенки растений, в нём аккумулируется около 50% всего углерода биосферы. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%.
Молекулы целлюлозы не ветвятся, а собираются в очень прочные волокна из параллельно уложенных цепочек, связанных в пучки водородными соединениями. Они нерастворимы в воде, внешне похожи на часть крахмала — амилозу, с одним отличием — цепи целлюлозы, соединённые по β типу в большинстве живых организмах не расщепляются, так как у них отсутствует нужный для этого фермент целлюлаза. Из-за того, что целлюлоза не может быть разорвана в пищеварительном тракте животных, она может работать как биологический структурный материал. Но некоторым жвачным, например, коровам, переваривать целлюлозу помогают симбиотические микроорганизмы.
Целлюлоза является пищей не только для коров, но и для грибов, микроорганизмов, некоторых протист и животных (термиты). Микроорганизмы, способные расщеплять целлюлозу, входят также в состав микрофлоры толстого кишечника человека.
Хитин
Хитин (фр. chitine, от др.-греч. χιτών: хитон — одежда, кожа, оболочка) — структурный полисахарид, найденный в кутикуле членистоногих и ряда других беспозвоночных (червей, кишечнополостных), клеточных оболочках некоторых грибов и протист. Кроме углерода, водорода и кислорода в его молекулах содержится азот (C8H13NO5)n, этим он отличается от целлюлозы. Состоит из остатков N-ацетилглюкозамина, связанных между собой β-гликозидными связями. Усваивать хитин способны немногие организмы, например некоторые бактерии. Но многие существа продуцируют фермент хитиназу, вероятно в качестве защиты от плесени.
Функции углеводов
В живых организмах углеводы выполняют различные функции, основные из них — энергетическая, запасающая и структурная.
- Энергетическая функция состоит в том, что углеводы под влиянием ферментов легко расщепляются и окисляются с выделением энергии. При полном окислении 1 г углеводов высвобождается 17,6 кДж энергии. Конечные продукты окисления углеводов — углекислый газ и вода.
Важнейшая роль углеводов в энергетическом обмене живых организмов связана с их способностью расщепляться как при наличии кислорода, так и без него. Это имеет большое значение для анаэробов.
- Запасающая функция. Полисахариды являются запасными питательными веществами, играя роль «хранилищ» энергии. Резервным углеводом растений является крахмал, животных и грибов — гликоген, бактерий — муреин (пептидогликан). При необходимости эти полисахариды расщепляются до глюкозы, которая служит основным источником энергии для большинства живых организмов.
- Структурная функция. Углеводы используются в качестве строительного материала. Оболочки клеток растений на 20-40 % состоят из целлюлозы, которая обладает высокой прочностью. Поэтому они надежно защищают внутриклеточное содержимое и поддерживают форму клеток. Хитин является важным структурным компонентом наружного скелета членистоногих, кольчатых червей, клеточных оболочек грибов и некоторых протист.
Биологические функции углеводов
- Олиго- и полисахариды входят в состав цитоплазматической мембраны клеток животных, образуя надмембранный комплекс — гликокаликс. Углеводные компоненты цитоплазматической мембраны выполняют рецепторную функцию: воспринимают сигналы из окружающей среды и передают их в клетку.
- Метаболическая функция углеводов состоит в том, что в клетках живых организмов моносахариды являются основой для синтеза многих органических веществ — олиго- и полисахаридов, нуклеотидов, некоторых спиртов. Ряд веществ, образующихся в ходе расщепления молекул моносахаридов, используется клетками для синтеза аминокислот, жирных кислот и др.
- Защитная. Они входят в состав слизей, предохраняющих кишечник, бронхи от механических повреждений, в состав репарина — вещества, предотвращающего свёртывание крови у человека.
- Осмотическая. Углеводы участвуют в регуляции осмотического давления в организме.
Вам будет интересно
Углеводы, вещество, список, функции
Углеводы, вещество, список, функции.
Углеводы – органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов растительного и животного мира.
Углеводы, вещество, состав
Классификации углеводов. Простые и сложные углеводы
Список (таблица) количества углеводов в продуктах
Функции углеводов
Углеводы, вещество, состав:
Углеводы – органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.
Углевод является биомолекулой, которая состоит из атомов углерода, водорода и кислорода.
Название данного класса соединений происходит от слов «гидраты углерода». Оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.
Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Углеводы составляют около 80 % сухой массы растений и 2-3 % массы животных. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.
Углеводы – весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах.
Углеводы являются не только основными компонентами живых существ и их питания, но и являются одним из основных биологических промежуточных продуктов для хранения и потребления энергии. У автотрофных организмов, таких как растения, глюкоза превращается в крахмал для хранения. У гетеротрофных организмов, таких как животные, она хранятся в виде гликогена, а затем используется в качестве источника энергии в метаболических реакциях.
Классификации углеводов. Простые и сложные углеводы:
Все углеводы состоят из отдельных «единиц», которыми являются сахариды.
По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц – олигосахариды, а более десяти – полисахариды.
Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях.
К моносахаридам относятся: глюкоза, фруктоза, галактоза, манноза.
Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.
Низкомолекулярные углеводы: моносахариды, дисахариды и олигосахариды, также называются сахарами.
К дисахаридам относятся: изомальтоза, лактоза, лактулоза, мальтоза, мелибиоза, нигероза, сахароза (обычный сахар, тростниковый или свекловичный), рутиноза, треголоза, целлобиоза и пр.
К олигосахаридам относятся: декстрин, генцианоза, мальтотриоза, мелицитоза, стахиоза, рафиноза, эрлоза и пр.
К полисахаридам относятся: галактоманнан, гликоген, глюкоманнан, крахмал, хитин, целлюлоза и пр.
Список (таблица) количества углеводов в продуктах:
Продукты | Калорийность (ккал в 100 г) | Содержание углеводов в 100 г продукта |
Алкогольные напитки | ||
Спирт 70%-ный | 222 | 35 |
Вермут сухой | 118 | 25 |
Вино красное | 68 | 20 |
Вино сухое белое | 66 | 20 |
Пиво | 32 | 10 |
Безалкогольные напитки | ||
Шоколад жидкий | 366 | 77,5 |
Какао-порошок | 312 | 12,5 |
Кока-кола | 39 | 10 |
Лимонад | 21 | 5 |
Кондитерские изделия | ||
Пирожное с кремом | 440 | 67,5 |
Печенье песочное | 504 | 65 |
Выпечка сдобная | 527 | 55 |
Бисквит сухой | 301 | 55 |
Эклеры | 376 | 37,5 |
Мороженое молочное | 167 | 25 |
Конфеты | ||
Леденцы | 327 | 87,5 |
Ирис | 430 | 70 |
Шоколад молочный | 529 | 60 |
Крупы | ||
Рис | 372 | 87,5 |
Хлопья кукурузные | 368 | 85 |
Мука простая | 350 | 80 |
Сырой овес, орехи, сухофрукты | 368 | 65 |
Хлеб белый | 233 | 50 |
Хлеб из муки грубого помола | 216 | 42,5 |
Рис вареный | 123 | 30 |
Отруби пшеничные | 206 | 27,5 |
Макароны вареные | 117 | 25 |
Молоко и молочные продукты | ||
Кефир фруктовый | 52 | 17,5 |
Молоко цельное сухое без сахара | 158 | 12,5 |
Кефир | 52 | 5 |
Мясо и мясные продукты | ||
Колбаса говяжья жареная | 265 | 15 |
Колбаса свиная жареная | 318 | 12,5 |
Колбаса ливерная | 310 | 5 |
Овощи | ||
Картофель, жаренный на растительном масле | 253 | 37,5 |
Перец зеленый сырой | 15 | 20 |
Картофель вареный | 80 | 17,5 |
Зерна сладкой кукурузы | 76 | 15 |
Свекла вареная | 44 | 10 |
Фасоль вареная | 48 | 7,5 |
Морковь вареная | 19 | 5 |
Орехи | ||
Каштаны | 170 | 37,5 |
Масло ореховое мягкое | 623 | 12,5 |
Орехи лесные | 380 | 7,5 |
Кокос сушеный | 604 | 7,5 |
Арахис соленый жареный | 570 | 7,5 |
Миндаль | 565 | 5 |
Орехи грецкие | 525 | 5 |
Рыба и морепродукты | ||
Креветки жареные | 316 | 30 |
Треска, жаренная в масле | 199 | 7,5 |
Камбала, жаренная в сухарях | 228 | 7,5 |
Окунь, приготовленный в духовке | 196 | 5 |
Сахар, варенье, джемы и пр. | ||
Сахар белый | 394 | 99,8 |
Мед | 288 | 77,5 |
Джем | 261 | 70 |
Мармелад | 261 | 70 |
Соусы и маринады | ||
Маринад сладкий | 134 | 35 |
Кетчуп томатный | 98 | 25 |
Майонез | 311 | 15 |
Супы | ||
Суп куриный с лапшой | 20 | 5 |
Фрукты | ||
Изюм сушеный | 246 | 65 |
Смородина сушеная | 243 | 62,5 |
Финики сушеные | 248 | 62,5 |
Чернослив | 161 | 40 |
Бананы свежие | 79 | 20 |
Виноград | 61 | 15 |
Вишня свежая | 47 | 12,5 |
Яблоки свежие | 37 | 10 |
Персики свежие | 37 | 10 |
Инжир зеленый свежий | 41 | 10 |
Груши | 41 | 10 |
Абрикосы свежие | 28 | 7,5 |
Апельсины свежие | 35 | 7,5 |
Мандарины свежие | 34 | 7,5 |
Компот из черной смородины без сахара | 24 | 5 |
Грейпфрут свежий | 22 | 5 |
Дыни медовые | 21 | 5 |
Малина свежая | 25 | 5 |
Земляника свежая | 26 | 5 |
Функции углеводов:
В живых организмах углеводы выполняют следующие функции:
Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так, целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих.
Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток. Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, покрывающих поверхность сосудов, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий, вирусов, а также от механических повреждений.
Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, АДФ, ДНК и РНК). Отдельные углеводы являются компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и т.д.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.
Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал (17,165 кДж) энергии и 0,4 г воды. Углеводы обеспечивают около 50-60% суточного энергопотребления организма, а при мышечной деятельности – до 70%.
Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин – у растений.
Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100 – 110 мг/л глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.
Источник: https://ru.wikipedia.org/wiki/Углеводы
Примечание: © Фото https://www.pexels.com, https://pixabay.com.
карта сайта
Коэффициент востребованности 60
функции углеводов в клетке и в организме
Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода» , оно было впервые предложено К. Шмидтом 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(h3O)y, формально являясь соединениями углерода и воды. Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных. В живых организмах углеводы выполняют следующие функции: Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.) , состоящие из клеточных стенок мёртвых клеток. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) . Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов. <a rel=»nofollow» href=»http://ru.wikipedia.org/wiki/Углеводы» target=»_blank»>http://ru.wikipedia.org/wiki/Углеводы</a> Удачи Вам!
Спасибо! Очень помогло
1) запасная функция (форма запасания энергии) — крахмал, гликоген 2) защитная функция гиалуроновая кислота, хондроитинсульфат — находятся в жидкости, смазывающей поверхность суставов, гепарин — препятствует свертыванию крови, различные слизи — капсулы бактерий, слизистые оболочки нашего организма 3) энергетическая — глюкоза — один из основных источников энергии, поступающих с пищей 4) рецепторная — углеводы в составе белков (гликопротеины) являются средством общения клетки с окружающей средой — рецепторами. 5) структурная — целлюлоза создает скелет для растительной клетки, хитин — каркас для крабов, раков, насекомых.
Углеводы — Википедия. Что такое Углеводы
Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.
Сахара́ — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.
Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.
Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].
Классификация
Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.
Распространённый в природе моносахарид — бета-D-глюкоза.Моносахари́ды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.
В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].
Дисахариды
Дисахари́ды (от др.-греч. δίς ‘два’, лат. saccharum ‘сахар’ и суффикса -ид) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].
Олигосахариды
О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2—10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.
Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].
Полисахариды
Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].
Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].
Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.
Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].
Структура гликогенаГликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.
Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].
Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].
Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].
Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].
Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].
Пространственная изомерия
Слева D-глицеральдегид, справа L-глицеральдегид. |
Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.
Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].
Биологическая роль
В живых организмах углеводы выполняют следующие функции:
- Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
- Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
- Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
- Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
- Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
- Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
- Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.
Биосинтез
В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.
Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:
- Cx(h3O)y+xO2→xCO2+yh3O, ΔH<0.001{\displaystyle {\mathsf {C_{x}(H_{2}O)_{y}+xO_{2}\rightarrow xCO_{2}+yH_{2}O,\ \Delta H<0.001}}}
В зелёных листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:
- xCO2+yh3O→Cx(h3O)y+xO2{\displaystyle {\mathsf {xCO_{2}+yH_{2}O\rightarrow C_{x}(H_{2}O)_{y}+xO_{2}}}}
Обмен
Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:
- Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
- Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
- Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
- Взаимопревращение гексоз.
- Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
- Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).
Важнейшие источники
Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.
Для обозначения количества углеводов в пище используется специальная хлебная единица.
К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.
Список наиболее распространенных углеводов
Примечания
- ↑ 1 2 3 4 Н. А. Абакумова, Н. Н. Быкова. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
- ↑ 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
- ↑ 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
- ↑ Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8.
- ↑ 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4.
Ссылки
Общие: | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Геометрия | |||||||||||||||
Моносахариды |
| ||||||||||||||
Мультисахариды | |||||||||||||||
Производные углеводов |