Ионы кальция в мышечных волокнах
Описаны химические свойства кальция и основные функции, которые выполняют ионы кальция в мышечных волокнах: участие в процессе сокращения мышечного волокна; участие в протекании креатинфосфатного пути ресинтеза АТФ; участие в протекании гликолиза; участие в катаболизме белка.
Ионы кальция в мышечных волокнах
Давайте поговорим о тех функциях, которые выполняют ионы кальция в мышечных волокнах. Но вначале вспомним, что такое кальций.
Кальций
Кальций (Са) – мягкий, химически активный щелочноземельный металл серебристо-белого цвета. Термин предложен Гемфри Дэви, который впервые получил кальций в чистом виде в 1808 году, выделив его из влажной гашеной извести. Из-за высокой активности кальций в свободном виде в природе не встречается. Широко известны соединения кальция – известняк, гипс, мрамор.
Место хранения ионов кальция в мышечном волокне
Ионы кальция в мышечном волокне находятся в органелле – саркоплазматическом ретикулуме.
Функции ионов кальция в мышечном волокне
Ионы кальция (Са2+) в мышечных волокнах выполняют ряд функций. Они участвуют:
- в процессе сокращения мышечного волокна;
- в протекании креатинфосфатного пути ресинтеза АТФ;
- в протекании гликолиза;
- в катаболизме белка.
Теперь немного подробнее о каждой функции.
Участие в процессе сокращения мышечного волокна
После того, как потенциал действия достигает Т-трубочек и саркоплазматического ретикулума, из него в саркоплазму выделяются ионы кальция. Считается, что в покое молекулы тропомиозина находятся над активными центрами белка актина и предотвращают прикрепление к ним головок миозина. После выделения ионов кальция из саркоплазматического ретикулума, они присоединяются к тропонину. Тропонин изменяет свою конфигурацию и «приподнимает» молекулы тропомиозина с активных участков актина. Как только открываются активные участки актина, к ним присоединяются головки миозина и начинается процесс сокращения мышечного волокна.
Участие в протекании креатинфосфатного пути ресинтеза АТФ
Расщепление креатинфосфата в мышечных волокнах ускоряется ферментом креатинкиназой. Активность этого фермента значительно возрастает при физических нагрузках за счет активирующего действия на неё ионов кальция.
Участие в протекании гликолиза
Гликолиз – один из путей ресинтеза АТФ при мышечной деятельности. В мышечных волокнах гликолиз представляет собой анаэробный распад гликогена до молочной кислоты (лактата). Гликолиз катализируется (ускоряется) ферментами: фосфорилазой и фосфофруктокиназой. Фосфорилаза активируется стрессовым гормоном адреналином, который выделяется в кровь непосредственно перед началом физической нагрузки. Также фермент фосфорилаза активируется ионами кальция.
Участие в катаболизме белка
Доказано, что ионы кальция активируют протеазы – ферменты, приводящие к катаболизму белка. По-видимому, чтобы оградить мышечное волокно от полного разрушения, работает кальциевый насос, который закачивает ионы кальция в саркоплазматический ретикулум.
Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц»
Литература
- Мак-Комас, А. Дж. Скелетные мышцы. – Киев: Олимпийская литература, 2001.- 407 с.
- Михайлов, С. С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
С уважением, А.В. Самсонова
Кальция и сокращение мышц — Справочник химика 21
Вследствие высокой химической активности фосфор в свободном виде в природе не встречается. В почве и в горных породах он содержится в виде солей фосфорной кислоты, преимущественно в виде фосфата кальция Саз(Р04)г. В виде соединений фосфор входит в состав костной, мышечной и нервной тканей человека и животных. В скелете фосфор содержится в виде фосфата кальция — эта соль и придает скелету твердость. В нервной и мышечной тканях фосфор содержится в виде органических соединений. Работа мозга, сокращение мышц связаны с химическими превращениями этих соединений. Фосфор играет таким образом исключительно большую роль во всех жизненных процессах. Выдающийся советский геолог академик А. Е. Ферсман назвал его элементом жизни и мысли . [c.72]Процессы, происходящие в коре больших полушарий, чрезвычайно сложны и мало исследованы. Мы все еще не знаем, каким образом мозг инициирует произвольные движения мышц. Установлено, однако, что сигналы, выходящие из мозга по направлению к мышцам по эфферентным волокнам, генерируются в больших моторных нейронах двигательной зоны коры эта зона расположена в виде полосы, идущей через весь мозг и прилегающей к сенсорной зоне (рис. 16-5). Аксоны моторных нейронов образуют пирамидный тракт, проводящий импульсы вниз к синапсам в спинном мозгу и оттуда к нервно-мышечным соединениям. Последние представляют собой специализированные синапсы, в которых происходит высвобождение ацетилхолина, передающего сигнал непосредственно мышечным волокнам. Волна деполяризации, проходящая по поверхности клетки и Т-трубочкам (гл. 4, разд. Е, 1 рис. 4-22, Д), инициирует высвобождение кальция и сокращение мышцы.
Аналогично гормональному может действовать нейрогенный механизм. Вызываемое нервным импульсом сокращение мышцы ведет к освобождению ионов кальция. Са » и специфический белковый фактор обусловливают образование активной киназы фосфорилазы Ь, а последняя вызывает превращение фосфорилазы Ь в а. [c.203]
Кальциевый мембранный электрод оказался ценным инструментом для физиологических исследований, поскольку ион кальция играет важную роль в нервной проводимости, формировании костей, мышечном сокращении, сокращениях мышц сердца и функции проводимости систолы сердца и почечных канальцев. Интересно, что некоторые из этих процессов в большей степени зависят от активности, чем от концентрации ионов кальция активность и есть параметр, измеряемый электродом.
Кальция определение в крови. Кальций присутствует в крови в трех формах связанный с белком, в виде комплекса и в виде свободного иона (рис. К-9). Ионы кальция физиологически активны они участвуют в таких процессах, как свертывание крови, сокращение мышц, активация некоторых ферментов и передача нервных импульсов. Для определения ионов кальция в крови, сыворотке и плазме используют кальций-селективный [c.52]
Возбуждение мышечного волокна связано с переносом ионов натрия и калия через сарколемму. Природа потенциала действия здесь такая же, как в аксоне, за исключением того, что основную роль в данном случае играют ионы кальция. Деполяризация сарколеммы сопровождается понижением разности потенциалов между поперечными канальцами и соседними участками саркоплазмы, что приводит к локальному изменению мембранного потенциала саркоплазматического ретикулума. Концентрация кальция в саркоплазме, в состоянии покоя не превышающая 10″ моль/л, после возбуждения увеличивается до моль/л. Такое резкое увеличение концентрации кальция активирует миофибриллы и вызывает их сокращение. Миофибриллы состоят из параллельно расположенных тонких нитей из белка актина и толстых нитей из другого белка, миозина. Движение этих нитей относительно друг друга, лежащее в основе сокращения мышц, требует расхода энергии, которая обеспечивается гидролизом АТР. Это движение подавляется белком тропонином, который находится между
При недостаточной функции паращитовидных желез (гипопаратиреоз) происходит снижение уровня кальция в крови (гипокальциемия) и других тканях в результате его усиленного вьщеления с мочой. Это может привести к тетании — стойкому сокращению мышц. Одновременно замедляется вьщеление фосфата с мочой, и его уровень в плазме растет. [c.342]
Механизмы регуляции синтеза и распада АТФ в настоящее время интенсивно изучаются, поскольку составляют энергетическую основу регуляции скорости сокращения мышц, других АТФ-зависимых процессов. Не исключено, что в скелетных мышцах скорость синтеза АТФ в процессе их работы регулируется ионами кальция, уровень которого изменяется в процессе сокращения—расслабления. Кальций влияет на процесс окислительного фосфорилирования, увеличивая скорость образования АТФ. Некоторые гормоны, например адреналин, также влияют на этот процесс (см. главу 8).
Биологическая роль макроэлементов. Кальций в организме человека составляет около 40 % общего количества всех минеральных веществ. Он входит в состав костей и зубов, придавая им прочность, депонируется в мембранах ретикулума скелетных мышц, участвует в запуске сокращения мышц, передаче нервных импульсов, регуляции проницаемости мембран клеток, в процессах свертывания крови, активирует многие обменные процессы, в том числе распад АТФ, способствует усвоению организмом железа и витамина В,2- Недостаточное поступление кальция в ткани организма приводит к выходу его из костей, что вызывает снижение их прочности (остеопороз), а также нарушение функции нервной системы, кровообращения, в том числе и мышечной деятельности.
Биологическое действие. Витамины группы D (кальциферолы) регулируют обмен кальция и фосфора в организме, поддерживая их постоянный уровень в крови с участием паратгормона и кальцитонина, усиливают их всасывание в тонком кишечнике и поступление в кровь, а также выход из костей и почек (рис. 43). Кальциферолы участвуют и в регуляции усвоения лимонной кислоты, что имеет отношение к аэробному энергообразованию, функции щитовидной и паращитовидной желез, сердечно-сосудистой и иммунной систем организма. Регулируя обмен кальция, они влияют на процессы сокращения мышц, передачу нервных импульсов и многие другие Са -зависимые процессы.
Кальций участвует в процессах сокращения мышц, построения костной ткани, усиливает усвоение фосфора. Поэтому кальций должен вноситься в организм с фосфором в соотношении 1 1,5. Основным источником кальция являются молоко и творог. [c.457]
В крови и лимфе кальций находится как в ионизированном, так и в неионизированном состоянии — в соединениях с белками, углеводами и др. Механизм свертыв
Кальций ионы Са на мышечное сокращение
Активация адреналином мышечной гликогенфосфорилазы происходит иначе, так как распад гликогена в скелетных мышцах стимулируется мышечными сокращениями (рис. 6.13). Киназа фосфорилазы (Са «-зависимая) активируется при мышечной работе под влиянием нервного импульса, так как в саркоплазме в этом случае возрастает концентрация ионов кальция. Это еще один механизм ускорения распада гликогена в мышце. Результатом дей- [c.145]Кальциевый мембранный электрод оказался ценным инструментом для физиологических исследований, поскольку ион кальция играет важную роль в нервной проводимости, формировании костей, мышечном сокращении, сокращениях мышц сердца и функции проводимости систолы сердца и почечных канальцев. Интересно, что некоторые из этих процессов в большей степени зависят от активности, чем от концентрации ионов кальция активность и есть параметр, измеряемый электродом.
Тропонин и тропомиозин опосредуют регуляторное действие ионов кальция на мышечное сокращение [c.269]
Скелеты позвоночных, раковины моллюсков и т. д. построены в основном из солей кальция. Ионы Са » играют важнейшую роль в механохимических процессах (мышечное сокращение,
Первым из этих белков был открыт тропонин С в клетках скелетных мышц роль его в мышечном сокращении обсуждалась в гл. 11 (разд. 11.1.12). Другой, близко родственный ему кальций-связывающий белок-кальмодулин — обнаружен во всех до сих пор изученных клетках животных и растений. Типичная животная клетка содержит более 10 молекул кальмодулина, что может составлять до 1% всего клеточного белка. Кальмодулин функционирует как многоцелевой внутриклеточный рецептор для Са . участвующий в большинстве процессов, регулируемых этими ионами. Это очень консервативный одиночный полипептид примерно из 150 аминокислот, имеющий четыре высокоаффинных Са -связывающих центра при связывании кальция он претерпевает большие конформационные изменения (рис. 12-29).
Кальций принимает активное участие в процессах нервно-мышечной возбудимости (как антагонист ионов К»), мышечного сокращения, свертывания крови, образует структурную основу костного скелета, влияет на проницаемость клеточных мембран и т.д. [c.583]
Какова роль ацетилхолина, ионов кальция, тропонина и тропомиозина в мышечном сокращении и расслаблении [c.305]
Из щелочно-земельных металлов в биологических системах повсеместно распространены магний и кальций. Многие эфиры и ангидриды фосфорной кислоты функционируют в виде магниевых солей. Концентрация ионов магния в клетках имеет исключительно важное значение для поддержания целостности и функционирования рибосом, т.е. для синтеза белков. Кроме того, магний входит в состав хлорофилла — основного пигмента зеленых растений, непосредственно поглощающего кванты видимого света для использования их энергии при фотосинтезе. Ионы кальция принимают участие в регуляции ряда важных клеточных процессов, в том числе мышечного сокращения и других двигательных функций. Кроме того, нерастворимые соли кальция участвуют в формировании опорных структур фосфат кальция — в формировании костей, карбонат кальция — в образовании раковин моллюсков.
Расслабление мышцы (релаксация) происходит после прекращения поступления двигательного нервного импульса. При этом проницаемость стенки цистерн саркоплазматического ретикулума уменьшается, и ионы кальция под действием кальциевого насоса, использующего энергию АТФ, уходят в цистерны. Их концентрация в саркоплазме быстро снижается до исходного уровня. Снижение концентрации кальция в саркоплазме вызывает изменение конформации тропонина, что приводит к фиксации молекул тропомиозина в определенных участках актиновых нитей и делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное положение. [c.133]
В процессе мышечного сокращения освобождаются не только ионы калия, но также ионы кальция [131] и фосфата [132]. Так как при этом в пептидных цепях также появляются новые положительно и отрицательно заряженные группы, то взаимная их [c.191]
К основным структурным внутримышечным факторам, лимитирующим алактатную работоспособность, можно отнести количество миофибрилл, от которых зависит сила и быстрота мышечного сокращения, и развитие саркоплазматической сети, содержащей ионы кальция и участвующей в проведении нервного импульса внутри мышечной клетки. [c.193]
Ионы играют важную роль в организме человека. Образование костей и зубов зависит от наличия ионов кальция, магния, фосфат- и карбо-нат-ионов в соответствующих соотношениях. Ионы в жидкостях организма создают осмотическое давление, которое обусловливает прохождение питательных веществ и продуктов жизнедеятельности в клетки тканей и из них. Переваривание пищи регулируется отношением водородных и гидроксильных ионов в желудочном и кишечном соках. Ионы кальция необходимы для свертывания крови и образования коагулятов молока в желудке ионы железа существенны для образования гемоглобина (красного пигмента крови). Мышечные сокращения и передача нервных импульсов также осуществляются при наличии некоторых ионов. [c.155]
В особом положении находятся мышечные клетки. Для мышечного сокращения необходимо много ионов кальция, и его надо доставлять к каждой из белковых [c.104]
Синхронизация гликогенолиза и мышечного сокращения активация киназы фосфорилазы ионами кальция, кальмодулином и тропонином [c.66]
И структурные белки. Несомненно, что их роль не только механическая. Доказано, что структурным белкам присущи и каталитические функции. Эти функции особенно ярко проявляются у мышечного сократительного белка миозина. Исследования В. В. Эн-гельгардта и Н. А. Любимовой показали, что миозин ускоряет взаимодействие с водой (т. е. гидролиз) важнейшего аккумулятора энергии — аденозинтрифосфорной кислоты (АТФ). При этом получается аденозиндифосфорная кислота и фосфат. Энергия реакции используется мышцей, во время работы которой нити белка миозина сокращаются. Следовательно, этот белок выполняет двойную нагрузку он регулирует освобождение энергии и он же потребляет энергию, сокращаясь в процессе работы мышцы. Молекула миозина представляет собой длинную цепь — ее длина равна примерно 160 нм, а молекулярная масса достигает 600000, Кроме миозина, известны и другие мышечные белк
Мышечные сокращения высвобождение кальция — Справочник химика 21
Химия и химическая технология
Статьи Рисунки Таблицы О сайте English В сердечных миоцитах акт сокращения также запускается за счет высвобождения кальция из цистерн СР. Однако у кардиомиоцитов система СР развита в меньщей степени, чем у скелетных мышечных волокон. Объем ретикулума достигает [c.148]Следует отметить, что не во всех мышечных клетках организма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т-система поперечных трубочек, подходящих непосредственно к саркомерам близко к /-дискам (см. рис. 7.11). Изменения мембранного потенциала во время деполяризации через Т-систему передается в таких клетках непосредственно на мембрану СР, вызывая залповое высвобождение ионов Са + и дальнейшую активацию сокращения (3, 4, 5). [c.161]
Процессы, происходящие в коре больших полушарий, чрезвычайно сложны и мало исследованы. Мы все еще не знаем, каким образом мозг инициирует произвольные движения мышц. Установлено, однако, что сигналы, выходящие из мозга по направлению к мышцам по эфферентным волокнам, генерируются в больших моторных нейронах двигательной зоны коры эта зона расположена в виде полосы, идущей через весь мозг и прилегающей к сенсорной зоне (рис. 16-5). Аксоны моторных нейронов образуют пирамидный тракт, проводящий импульсы вниз к синапсам в спинном мозгу и оттуда к нервно-мышечным соединениям. Последние представляют собой специализированные синапсы, в которых происходит высвобождение ацетилхолина, передающего сигнал непосредственно мышечным волокнам. Волна деполяризации, проходящая по поверхности клетки и Т-трубочкам (гл. 4, разд. Е, 1 рис. 4-22, Д), инициирует высвобождение кальция и сокращение мышцы. [c.329]
Деполяризация мембран цистерн приводит к высвобождению кальция и началу мышечного сокращения. Кальций связывается с субъединицей С тропонина. Это изменяет конформацию всей молекулы тропонина — субъединица I перестает мешать взаимодействию актина с миозином изменение конформации субъединицы Т передается на тропомиозин. Далее тропомиозин поворачивается на 20° и открывает закрытые ранее центры в актине для связывания с миозином. Головка миозина, которая в покое представляет собой комплекс М+АДФ+Рн, присоединяется к актину перпендикулярно, причем актин обладает к этому комплексу большим сродством (образование поперечных мостиков). Присоединение актина вызывает быстрое освобождение АДФ и Рн из миозина. Это приводит к изменению конформации, и головка миозина поворачивается на 45° (рабочий ход). Поворот головки, связанной с актином, вызывает перемещение тонкой нити относительно миозина. К головке миозина вместо ушедших АДФ и Рн вновь присоединяется АТФ, образуя комплекс М + АТФ. Актин обладает к нему малым сродством, что вызывает отсоединение головки миозина (разрыв поперечных мостиков). Она вновь становится перпендикулярно тонкой нити. В головке миозина, не связанной с актином, происходит гидролиз АТФ. Вновь образуется комплекс АДФ + Рн -Ь миозин, и все повторяется. После прекращения действия двигательного импульса Са » » с помощью Са2+-зависимой АТФазы переходит в саркоплазматический ретикулум. Уход кальция из комплекса тропонина приводит к смещению тропомиозина и закрытию активных центров актина, делая его неспособным взаимодействовать с миозином, — мышца расслабляется. [c.460]
Смотреть страницы где упоминается термин Мышечные сокращения высвобождение кальция: [c.280]
Биохимия Том 3 (1980) — [ c.329 ]
© 2019 chem21.info Реклама на сайте
Сокращение скелетных мышц человека
Описан процесс сокращения скелетных мышц человека, который состоит из ряда этапов. Первый этап связан с поступлением нервного импульса по аксону мотонейрона к мышечному волокну. Второй этап заключается в возникновении потенциала действия и распространении его вдоль мышечного волокна. В результате третьего этапа в саркоплазму выделяются ионы кальция, что приводит к началу взаимодействия толстого и тонкого филаментов. Четвертый этап представляет собой скольжение тонких филаментов относительно толстых, что составляет собственно сокращение мышцы.
Давайте теперь разберемся в механизме сокращения мышцы, точнее в механизме сокращения мышечных волокон, а еще более точно в механизме сокращения миофибрилл или другими словами, в механизме сокращения саркомера. Этот процесс можно условно разделить на несколько этапов.
Поступление нервного импульса к мышечному волокну
Чтобы сократиться, мышца должна получить сигнал из центральной нервной системы (ЦНС). Такими сигналами являются импульсы, поступающие по мотонейрону к мышце.
Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц»
Вспомним, что при подходе к мышце аксон мотонейрона ветвится, то есть пускает веточки к мышечным волокнам. Если такого соединения нет, мышечное волокно сокращаться не будет и постепенно атрофируется.
Возникновение потенциала действия
После того, как по аксону мотонейрона к мышечным волокнам приходит импульс, из него в области соединения выделяется ацетилхолин. Выделение этого нейромедиатора (ацетилхолина) приводит к протеканию ряда процессов, в результате которых полярность сарколеммы мышечного волокна меняется. Это называется деполяризацией сарколеммы мышечного волокна. В результате развивается потенциал действия.
Выделение ионов кальция
Потенциал действия через отверстия в сарколемме «проникает» внутрь мышечного волокна и через Т-трубочки достигает саркоплазматического ретикулума (то есть происходит дополяризация не только мембраны мышечного волокна, но и мембран Т-трубочек и саркоплазматического ретикулума). Это в конечном счете приводит к выделению из саркоплазматического ретикулума ионов кальция в саркоплазму мышечного волокна (рис. 1).
Рис.1.
Затем ионы кальция соединяются с тропонином (тропонин – один из белков тонкого филамента). Этот белок имеет шарообразную форму и расположен в тонком филаменте регулярно через определенные расстояния. После соединения с ионами кальция, тропонин меняет свою конфигурацию и приподнимает длинные тропомиозиновые трубки. Когда мышца неактивна, длинные трубки белка тропомиозина закрывают активные центры на актине. После того как тропомиозиновые трубки приподнимаются, на актине открываются активные центры. К ним теперь могут прикрепляться миозиновые головки.
Сокращение саркомера (гребковая гипотеза, теория скользящих нитей)
Когда миозиновая головка толстого филамента прикрепляется к тонкому филаменту, между толстым и тонким филаментами начинается взаимодействия (говорят: «Образуется поперечный мостик» (рис. 2). При взаимодействии с актином каждая миозиновая молекула ежесекундно расщепляет с выделением энергии до 10 молекул АТФ. За счет энергии, высвобождающейся при расщеплении АТФ, миозиновая головка поворачивается и тянет тонкий филамент в направлении центра саркомера. Это приводит к скольжению толстого и тонкого филаментов относительно друг друга. В конце гребка (поворота) к миозиновой головке присоединяется новая молекула АТФ, что приводит к отделению головки от актина и присоединению её к новому активному участку тонкого филамента. Многократное повторение этого процесса приводит к тому, что расстояние между Z-дисками уменьшается. Следовательно, происходит уменьшение длины саркомера. Одновременное сокращение всех саркомеров, расположенных последовательно вдоль миофибриллы приводит к уменьшению её длины, длины мышечного волокна и всей мышцы в целом. Мышца работает в преодолевающем режиме.
Прекращение импульсов, поступающих от мотонейрона к мышечному волокну приводит к расслаблению мышцы.
Рис.2. Схема, иллюстрирующая взаимодействие толстого и тонкого филаментов (Л. Страйер, 1985)
С уважением, А.В. Самсонова
4.Роль ионов кальция в процессе мышечного сокращения. Роль холинэстеразы. Теория скольжения.
Сокращение обусловлено высвобождением ионов Са2+, хранящихся в саркоплазматическом ретикулуме; когда Са2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление. Источником энергии для кальциевого насоса служит АТФ — это одна из трех его главных функций в мышечном сокращении.
Установлено, что в области нервно-мышечного соединения в больших концентрациях присутствует фермент холинэстераза, способная быстро расщеплять ацетилхолин, выделяющийся в нервном окончании. Значение этого процесса становится ясным, если учесть, что в естественных условиях к мышце поступают быстро следующие друг за другом нервные импульсы и постсинаптическая мембрана, деполяризованная предшествующей порцией ацетилхолина, становится малочувствительной к действию следующей порции. Чтобы идущие друг за другом нервные импульсы могли осуществлять нормальное возбуждающее действие, необходимо к моменту прихода каждого из них «убрать» предшествующую порцию медиатора. Эту функцию и выполняет холинэстераза. Холин, освобождающийся при расщеплении молекул ацетилхолина, переносится обратно в нервное окончание специальной транспортной системой, существующей в пресинаптической мембране.
Теория скольжения волокон
Согласно теории скольжения волокон, мышца сокращается благодаря двум видам сократительных белков — актина и миозина, задействованных в ряде механических действий. Каждое миозиновое волокно окружено шестью актиновыми волокнами. Волокна миозина имеют так называемые поперечные мостики, которые вытянуты по направлению к актиновым волокнам. Когда импульс передаваемый двигательным нейроном из нервных центров, достигает мышечной клетки, то иннервируется все мышечное волокно (All Or None), вызывая химическую реакцию, позволяющую актиновым волокнам соприкасаться с миозиновыми поперечными мостиками.
При осуществлении связи миозиновой нити с актиновой постредством поперечных мостиков высвобождается энергия, которая способствует осуществлению мостиками движения, приводящего к скольжению актиновых волокон вдоль миозиновых. Благодаря этому скольжению происходитукорачивание (сокращение) мышцы, генерирующей силу. После прекращения стимуляции актиновые и миозиновые волокна расстыковываются, возвращая мышце длину, характерную для состояния покоя.
5.Трупное окоченение. +
6. Одиночное сокращение мышцы, суммация сокращений и тетанус. Виды тетанического сокращения.
При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выделить три последовательных периода:
1. Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около 1-2 мс. Во время латентного периода генерируется и распространяется ПД, происходит высвобождение кальция из СР, взаимодействие актина с миозином и т.д.
2. Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительность от 10 до 100 мсек.,
3. Период расслабления. Его длительность несколько больше, чем укорочения.
В режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы, мышцы сгибателей пальцев. Чаще одиночные сокращения суммируются.
Суммация – это сложение двух последовательных сокращений при нанесении на нее двух пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефракторного периода.
Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда она уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения. Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить, например, нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности.
Тетанус –это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий.
Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация. Гладкий тетанус возникает тогда, когда каждое последующее раздражение наносится в конце периода укорочения. Т.е. имеет место полная суммация отдельных сокращений. Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например, тремор рук при алкогольной интоксикации и болезни Паркинсона.