Цикл фитоглобина и оксида азота — Википедия
Материал из Википедии — свободной энциклопедии
Цикл фитоглобина и оксида азота — метаболический путь, который индуцируется в растениях в условиях недостатка кислорода и является альтернативой гликолитической ферментации. В этом цикле оксид азота (NO) метаболизируется с участием фитоглобина (Pgb)[1]. Цикл обеспечивает поддержание энергетического статуса растений в условиях ограниченного доступа кислорода[2]. Фитоглобин действует как компонент терминальной диоксигеназной системы, в которой образуется нитрат-ион в результате реакции оксигенированного фитоглобина с NO. Фитоглобины класса 1 индуцируются у растений в условиях гипоксии, связывают кислород при наномолярных концентрациях и могут эффективно метаболизировать NO при клеточных концентрациях кислорода, которые значительно ниже требуемых для функционирования цитохром с-оксидазы. В ходе реакции фитоглобин окисляется до метфитоглобина, который должен быть далее восстановлен для обеспечения непрерывной работы цикла
- ↑ Igamberdiev A.U., Baron K., Manac’h-Little N., Stoimenova M., Hill R.D. The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling (англ.) // Annals of Botany : journal. — 2005. — Vol. 96, no. 4. — P. 557—564. — DOI:10.1093/aob/mci210. — PMID 16027133.
- ↑ Gupta K.J., Igamberdiev A.U. The anoxic plant mitochondrion as a nitrite: NO reductase (англ.) // Mitochondrion : journal. — 2011. — Vol. 11, no. 4. — P. 537—543. — DOI:10.1016/j.mito.2011.03.005. — PMID 21406251.
- ↑ Igamberdiev A.U., Bykova N.V., Hill R.D. Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin (англ.) // Planta : journal. — 2006. — Vol. 223, no. 5. — P. 1033—1040. — DOI:10.1007/s00425-005-0146-3. — PMID 16341544.
- ↑ Jokipii-Lukkari S., Kastaniotis A.J., Parkash V., Sundström R., Leiva-Eriksson N., Nymalm Y., Blokhina O., Kukkola E., Fagerstedt K.V., Salminen T.A., Läärä E., Bülow L., Ohlmeier S., Hiltunen J.K., Kallio P.T., Häggman H. Dual targeted poplar ferredoxin NADP(+) oxidoreductase interacts with hemoglobin 1 (англ.) // Plant Science : journal. — Elsevier, 2016. — Vol. 247. — P. 138—149. — DOI:10.1016/j.plantsci.2016.03.013. — PMID 27095407.
- ↑ Yamasaki H., Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species (англ.) // FEBS Letters (англ.)русск. : journal. — 2000. — Vol. 468, no. 1. — P. 89—92. — DOI:10.1016/S0014-5793(00)01203-5. — PMID 10683447.
- ↑ Stöhr C., Strube F., Marx G., Ullrich W.R., Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite (англ.) // Planta : journal. — 2001. — Vol. 212, no. 5—6. — P. 835—841. — DOI:10.1007/s004250000447. — PMID 11346959.
- ↑ Stoimenova M., Igamberdiev A.U., Gupta K.J., Hill R.D. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria (англ.) // Planta : journal. — 2007. — Vol. 226, no. 2. — P. 465—474. — DOI:10.1007/s00425-007-0496-0. — PMID 17333252.
- ↑ Vartapetian B.B., Polyakova L.I. Protective effect of exogenous nitrate on the mitochondrial ultrastructure of Oryza sativa coleoptiles under strict anoxia (англ.) // Protoplasma. — 1999. — Vol. 206, iss. 1—3. — P. 163—167. — ISSN 1615-6102 0033-183X, 1615-6102. — DOI:10.1007/BF01279263.
Оксид азота(I) — Википедия
Оксид азота | |
---|---|
Общие | |
Систематическое наименование | Оксонитрид азота(I) |
Хим. формула | N2O |
Физические свойства | |
Состояние | бесцветный газ |
Молярная масса | 44,0128 г/моль |
Плотность | 1,98 г/л (при н. у.) |
Энергия ионизации | 12,89 ± 0,01 эВ[1] |
Термические свойства | |
Т. плав. | -90,86 °C |
Т. кип. | -88,48 °C |
Давление пара | 51,3 ± 0,1 атм[1] |
Классификация | |
Рег. номер CAS | 10024-97-2 |
PubChem | 948 |
233-032-0 | |
SMILES | |
InChI | |
Кодекс Алиментариус | E942 |
RTECS | QX1350000 |
ChEBI | 17045 и 44250 |
ChemSpider | 923 |
Безопасность | |
NFPA 704 | |
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного. |
Окси́д азо́та(I) (оксид диазота, закись азота, веселящий газ) — соединение с химической формулой N2O. Иногда называется «веселящим газом» из-за производимого им опьяняющего эффекта. При нормальной температуре это бесцветный негорючий газ с приятным сладковатым запахом и привкусом.
История
Впервые был получен в 1772 году Джозефом Пристли, который назвал его «дефлогистированным нитрозным воздухом»[2]. В 1799 г. его исследовал Г. Дэви.
Строение молекулы
Строение молекулы оксида азота(I) описывается следующими резонансными формами:
Наибольший вклад вносит N-оксидная форма оксида азота(I). Порядок связи N-N оценивается как 2,73, порядок связи N-O — как 1,61. Резонансная структура с возможностью противоположного расположения зарядов в молекуле N2O обусловливает низкий дипольный момент молекулы, равный 0,161 Дб.
Физические свойства
Бесцветный газ, тяжелее воздуха (относительная плотность 1,527), с характерным сладковатым запахом. Растворим в воде (0,6 объёма N2O в 1 объёме воды при 25 °C, или 0,15 г/100 мл воды при 15 °C), растворим также в этиловом спирте, эфире, серной кислоте. При 0 °C и давлении 30 атм, а также при комнатной температуре и давлении 40 атм сгущается в бесцветную жидкость. Из 1 кг жидкой закиси азота образуется 500 л газа. Молекула закиси азота имеет дипольный момент 0,161 Д, коэффициент преломления в жидком виде равен 1,330 (для жёлтого света с длиной волны 589 нм). Давление паров жидкого N2O при 20 °C равно 5150 кПа.
Химические свойства
Относится к несолеобразующим оксидам, с водой, с растворами щелочей и кислот не взаимодействует. Не воспламеняется, но поддерживает горение: тлеющая лучина, опущенная в него, загорается, как в чистом кислороде. Смеси с эфиром, циклопропаном, хлорэтаном в определённых концентрациях взрывоопасны. Оксид азота(I) является озоноразрушающим веществом, а также парниковым газом. В нормальных условиях N
- N2O+h3→N2+h3O{\displaystyle {\mathsf {N_{2}O+H_{2}\rightarrow N_{2}+H_{2}O}}}
- 2N2O+C→2N2+CO2{\displaystyle {\mathsf {2N_{2}O+C\rightarrow 2N_{2}+CO_{2}}}}
При взаимодействии с сильными окислителями N
- 5N2O+8KMnO4+7h3SO4→5Mn(NO3)2+3MnSO4+4K2SO4+7h3O{\displaystyle {\mathsf {5N_{2}O+8KMnO_{4}+7H_{2}SO_{4}\rightarrow 5Mn(NO_{3})_{2}+3MnSO_{4}+4K_{2}SO_{4}+7H_{2}O}}}
При нагревании N2O разлагается:
- 2N2O→2N2+O2{\displaystyle {\mathsf {2N_{2}O\rightarrow 2N_{2}+O_{2}}}}
Оксид азота(I) реагирует с амидами металлов с образованием соответствующих неорганических азидов:
- 2NaNh3+N2O→NaN3+NaOH+Nh4{\displaystyle {\mathsf {2NaNH_{2}+N_{2}O\rightarrow NaN_{3}+NaOH+NH_{3}}}}
При взаимодействии аммиака над катализатором образуется азид аммония:
- 2Nh4+N2O→Ni−Al2O3Nh5N3+h3O{\displaystyle {\mathsf {2NH_{3}+N_{2}O{\xrightarrow[{}]{Ni-Al_{2}O_{3}}}NH_{4}N_{3}+H_{2}O}}}
Получение
Оксид азота(I) получают осторожным (опасность взрывного разложения!) нагреванием сухого нитрата аммония:
- Nh5NO3→N2O+2h3O.{\displaystyle {\mathsf {NH_{4}NO_{3}\rightarrow N_{2}O+2H_{2}O.}}}
Более удобным способом является нагревание сульфаминовой кислоты с 73%-й азотной кислотой:
- Nh3SO2OH+HNO3(73%)→N2O+h3SO4+h3O.{\displaystyle {\mathsf {NH_{2}SO_{2}OH+HNO_{3}(73\%)\rightarrow N_{2}O+H_{2}SO_{4}+H_{2}O.}}}
В химической промышленности закись азота является побочным продуктом и для её разрушения используют каталитические конвертеры, так как выделение в виде товарного продукта, как правило, экономически нецелесообразно.
Биологическое значение
Закись азота образуется как при ферментативном, так и при неферментативном восстановлении из окиси азота (II)[3]. В опытах in vitro было обнаружено, что закись азота образуется при реакции между окисью азота (II) и тиолом или тиол-содержащими соединениями[4]. Сообщается, что образование N2O из окиси азота было обнаружено в цитозоле гепатоцитов, что заставляет предполагать возможное образование этого газа в клетках млекопитающих в физиологических условиях[5]. В организме бактерий закись азота образуется в ходе процесса, называемого денитрификацией, и катализируемого нитрооксид-редуктазой. Ранее этот процесс предполагался специфичным для некоторых видов бактерий и отсутствующим у млекопитающих, но новые данные заставляют предполагать, что это не так. Было показано, что физиологически релевантные концентрации закиси азота ингибируют как ионные токи, так и опосредуемые эксайтотоксичностью нейродегенеративные процессы, происходящие при чрезмерном возбуждении NMDA-рецепторов[6]. Также закись азота ингибирует биосинтез метионина, угнетая активность метионин-синтетазы и скорость превращения гомоцистеина в метионин и повышая концентрацию гомоцистеина в культурах лимфоцитов[7] и в биоптатах человеческой печени[8]. Хотя закись азота не является лигандом для гема, и не реагирует с тиоловыми группами, она обнаруживается во внутренних структурах гемосодержащих белков, таких, как гемоглобин, миоглобин, цитохромоксидаза[9]. Способность закиси азота нековалентно, обратимо изменять структуру и функции гемосодержащих белков была показана исследованием сдвига инфракрасных спектров тиоловых групп цистеинов гемоглобина[10] и тем, что закись азота способна частично и обратимо ингибировать функцию цитохромоксидазы C[11]. Точные механизмы этого нековалентного взаимодействия закиси азота с гемосодержащими белками и биологическое значение этого явления заслуживают дальнейших исследований. В настоящее время представляется возможным, что эндогенная закись азота участвует в регуляции активности NMDA[6] и опиоидной системы[12][13]. Обладает нейротоксическими свойствами.
Применение
Существует два вида закиси азота — пищевая, или медицинская для медицинского применения (высокой степени очистки) и техническая — технический оксид диазота, в котором есть примеси, количество которых указывается в соответствующих техусловиях (ТУ) на данный газ. «Медицинская» закись азота используется в основном как средство для ингаляционного наркоза, находит применение и в пищевой промышленности (например, для изготовления взбитых сливок) в качестве пропеллента. Как пищевой продукт, имеет индекс E942. Также иногда используется для улучшения технических характеристик двигателей внутреннего сгорания. В промышленности применяется как пропеллент и упаковочный газ. Может использоваться в ракетных двигателях в качестве окислителя, а также как единственное топливо в монокомпонентных ракетных двигателях.
Средство для ингаляционного наркоза
Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость. Закись азота обладает слабой наркотической активностью, в связи с чем в медицине её применяют в больших концентрациях. В смеси с кислородом при правильном дозировании (до 80 % закиси азота) вызывает хирургический наркоз. Часто применяют комбинированный наркоз, при котором закись азота сочетают с другими средствами для наркоза, анальгетиками, миорелаксантами и т. п. Например, применяется комбинированный наркоз закисью азота и гексеналом с фентаниловой анальгезией и миорелаксацию дитилином.
Закись азота, предназначенная для медицинских нужд (высокой степени очистки от примесей), не вызывает раздражения дыхательных путей. Будучи, в процессе вдыхания, растворенной в плазме крови, практически не изменяется и не метаболизируется, с гемоглобином не связывается. После прекращения вдыхания выделяется (в течение 10—15 мин) через дыхательные пути в неизменном виде. Период полувыведения — 5 минут.
Закись азота используется для ингаляционного наркоза в хирургии, она удобна для кратковременного наркоза (и рауш-наркоза) в хирургической стоматологии, а также для обезболивания родов (поскольку слабо влияет на родовую деятельность и нетоксична для плода).
Смесь закиси азота с кислородом получают и непосредственно применяют при помощи специальных аппаратов для наркоза. Обычно начинают со смеси, содержащей 70—80 % закиси азота и 30—20 % кислорода, затем количество кислорода увеличивают до 40—50 %[источник не указан 1941 день]. Если не удается получить необходимую глубину наркоза, при концентрации закиси азота 70—75 %, добавляют более мощные наркотические средства: фторотан, диэтиловый эфир, барбитураты.
Для более полного расслабления мускулатуры применяют миорелаксанты, при этом не только усиливается расслабление мышц, но также улучшается течение наркоза.
После прекращения подачи закиси азота следует во избежание гипоксии продолжать давать кислород в течение 4—5 мин.
Применять закись азота, как и любое средство для наркоза, необходимо с осторожностью, особенно при выраженных явлениях гипоксии и нарушении диффузии газов в лёгких.
Для обезболивания родов пользуются методом прерывистой аутоанальгезии с применением, при помощи специальных наркозных аппаратов, смеси закиси азота (75 %) и кислорода. Роженица начинает вдыхать смесь при появлении предвестников схватки и заканчивает вдыхание на высоте схватки или по её окончании.
Для уменьшения эмоционального возбуждения, предупреждения тошноты и рвоты и потенцирования действия закиси азота возможна премедикация внутримышечным введением 0,5%-го раствора диазепама (седуксена, сибазона) в количестве 1—2 мл (5—10 мг).
Форма выпуска: в металлических баллонах вместимостью 10 л под давлением 50 атм в сжиженном состоянии. Баллоны окрашены в серый цвет и имеют надпись «Для медицинского применения».
В двигателях внутреннего сгорания
Закись азота иногда используется для улучшения технических характеристик двигателей внутреннего сгорания. В случае автомобильных применений вещество, содержащее закись азота, и горючее впрыскиваются во впускной (всасывающий) коллектор двигателя, что приводит к следующим результатам:
- снижает температуру всасываемого в двигатель воздуха, обеспечивая плотный поступающий заряд смеси.
- увеличивает содержание кислорода в поступающем заряде (воздух содержит лишь ~23,15 масс. % кислорода).
- повышает скорость (интенсивность) сгорания в цилиндрах двигателя.
В реактивных двигателях
Иногда используется в качестве окислителя в однокомпонентном топливе с этаном, этиленом или ацетиленом в качестве топлива.
В пищевой промышленности
В пищевой промышленности соединение зарегистрировано в качестве пищевой добавки E942, как пропеллент и упаковочный газ (предотвращают порчу продукта). Закись азота используется в основном для распыления пищевых продуктов.
Хранение
Хранение: при комнатной температуре в закрытом помещении, вдали от огня.
Примечания
Литература
Оксид азота(II) — Википедия
Оксид азота | |
---|---|
Систематическое наименование | Оксид азота(II) |
Хим. формула | NO |
Состояние | бесцветный газ |
Молярная масса | 30,0061 г/моль |
Плотность | 0,00134 (газ) |
Энергия ионизации | 9,27 ± 0,01 эВ[1] |
Т. плав. | −163,6 °C |
Т. кип. | −151,7 °C |
Энтальпия образования | 81 кДж/моль |
Давление пара | 34,2 ± 0,1 атм[1] |
Растворимость в воде | 0,01 г/100 мл |
Рег. номер CAS | [10102-43-9] |
PubChem | 145068 |
Рег. номер EINECS | 233-271-0 |
SMILES | |
InChI | |
RTECS | QX0525000 |
ChEBI | 16480 |
Номер ООН | 1660 |
ChemSpider | 127983 |
Пиктограммы СГС | |
NFPA 704 | |
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного. |
Оксид азота(II) (мон(о)оксид азота, окись азота, нитрозил-радикал) NO — несолеобразующий оксид азота.
Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N2O2. Это непрочные соединения с ΔH° димеризации около 17 кДж/моль. Жидкий оксид азота(II) на 25 % состоит из молекул N2O2, а твёрдый целиком состоит из них.
Получение
Оксид азота(II) — единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200—1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах (тепловой эффект реакции −180,9 кДж):
- N2+O2→2NO{\displaystyle {\mathsf {N_{2}+O_{2}\rightarrow 2NO}}}
и тотчас же реагирует с кислородом:
- 2NO+O2→2NO2.{\displaystyle {\mathsf {2NO+O_{2}\rightarrow 2NO_{2}.}}}
При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.
В лаборатории его обычно получают взаимодействием 31%-ной HNO3 с некоторыми металлами, например, с медью:
- 3Cu+8HNO3→3Cu(NO3)2+2NO+4h3O.{\displaystyle {\mathsf {3Cu+8HNO_{3}\rightarrow 3Cu(NO_{3})_{2}+2NO+4H_{2}O.}}}
Более чистый, не загрязнённый примесями NO можно получить по реакциям:
- FeCl2+NaNO2+2HCl→FeCl3+NaCl+NO+h3O,{\displaystyle {\mathsf {FeCl_{2}+NaNO_{2}+2HCl\rightarrow FeCl_{3}+NaCl+NO+H_{2}O,}}}
- 2HNO2+2HI→2NO+I2+2h3O.{\displaystyle {\mathsf {2HNO_{2}+2HI\rightarrow 2NO+I_{2}+2H_{2}O.}}}
Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Cr2O3 (как катализаторов):
- 4Nh4+5O2→4NO+6h3O.{\displaystyle {\mathsf {4NH_{3}+5O_{2}\rightarrow 4NO+6H_{2}O.}}}
Получение NO является одной из стадий получения азотной кислоты.
Химические свойства
При комнатной температуре и атмосферном давлении происходит окисление NO кислородом воздуха:
- 2NO+O2→2NO2.{\displaystyle {\mathsf {2NO+O_{2}\rightarrow 2NO_{2}.}}}
Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя с образованием нитрозилхлорида:
- 2NO+Cl2→2NOCl.{\displaystyle {\mathsf {2NO+Cl_{2}\rightarrow 2NOCl.}}}
В присутствии более сильных восстановителей NO проявляет окислительные свойства:
- 2SO2+2NO→2SO3+N2.{\displaystyle {\mathsf {2SO_{2}+2NO\rightarrow 2SO_{3}+N_{2}.}}}
В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.
Физиологическое действие
Токсичность
Оксид азота (II) — ядовитый газ с удушающим действием.
Действие на растения
Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках — ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные).Оксид азота является одним из немногих известных газотрансмиттеров и, кроме того, является также химически высокореактивным свободным радикалом, способным выступать как в роли окислителя, так и в роли восстановителя. Окись азота является ключевым вторичным посредником в организмах позвоночных и играет важную роль в межклеточной и внутриклеточной передаче сигнала и, как следствие, во множестве биологических процессов.[2] Известно, что окись азота производится практически всеми типами живых организмов, от бактерий, грибов и растений до клеток животных.[3]
Окись азота, первоначально известная под именем эндотелиального сосудорасширяющего фактора (химическая природа которого тогда ещё была не известна) синтезируется в организме из аргинина при участии кислорода и НАДФ ферментом синтазой оксида азота. Восстановление неорганических нитратов также может быть использовано для производства организмом эндогенной окиси азота. Эндотелий кровеносных сосудов использует окись азота в качестве сигнала окружающим гладкомышечным клеткам расслабиться, что приводит к вазодилатации и увеличению кровотока. Окись азота является высокореактивным свободным радикалом со временем жизни порядка нескольких секунд, но при этом обладает высокой способностью к проникновению сквозь биологические мембраны. Это делает окись азота идеальной сигнальной молекулой для кратковременного аутокринного (внутри клетки) или паракринного (между близко расположенными или соседними клетками) обмена сигналами.[4]
Независимо от активности синтазы оксида азота, существует и другой путь биосинтеза окиси азота, так называемый нитрат-нитрит-оксидный путь, состоящий в последовательном восстановлении пищевых нитратов и нитритов, получаемых из растительной пищи.[5] Было показано, что богатые нитратами овощи, в особенности листовая зелень, такая, как шпинат и руккола, а также свёкла, способны повышать уровень эндогенной окиси азота и обеспечивать защиту миокарда от ишемии, а также снижать артериальное давление у лиц с предрасположенностью к артериальной гипертензии или начинающимся развитием АГ.[6][7] Для того, чтобы организм мог производить окись азота из нитратов пищи по нитрат-нитрит-оксидному пути, сначала обязательно должно произойти восстановление нитратов до нитритов с помощью сапрофитных бактерий (бактерий-комменсалов), которые обитают во рту.[8] Мониторинг содержания окиси азота в слюне позволяет обнаружить биотрансформацию растительных нитратов в нитриты и окись азота. Повышение уровня окиси азота в слюне наблюдается при диетах, богатых листовой зеленью. В свою очередь, листовая зелень — часто важнейший компонент многих антигипертензивных и «сердечных» диет, разработанных для лечения гипертонической болезни, ишемической болезни сердца, сердечной недостаточности.[9]
Выработка окиси азота повышена у людей, живущих в горах, особенно на больших высотах. Это способствует приспособлению организма к условиям пониженного парциального давления кислорода и уменьшению вероятности гипоксии за счёт увеличения кровотока как в лёгких, так и в периферических тканях. Известные эффекты окиси азота включают в себя не только вазодилатацию, но и участие в нейротрансмиссии в качестве газотрансмиттера, и активацию роста волос,[10] и образование реактивных промежуточных продуктов обмена, и участие в процессе эрекции пениса (благодаря способности окиси азота расширять сосуды полового члена). Фармакологически активные нитраты, такие, как нитроглицерин, амилнитрит, нитропруссид натрия, реализуют своё вазодилатирующее, антиангинальное (антиишемическое), гипотензивное и спазмолитическое действие благодаря тому, что из них в организме образуется окись азота. Вазодилатирующее гипотензивное лекарство миноксидил содержит остаток NO и может работать, кроме всего прочего, ещё и как агонист NO. Аналогично, силденафил и подобные ему препараты способствуют улучшению эрекции преимущественно за счёт того, что усиливают работу связанного с NO сигнального каскада в половом члене.
Окись азота способствует поддержанию гомеостаза сосудов, вызывая расслабление гладких мышц стенок сосудов и угнетая их рост и утолщение интимы сосудов (гипертензивное ремоделирование сосудов), а также угнетая адгезию и агрегацию тромбоцитов и адгезию лейкоцитов к эндотелию сосудов. У больных с атеросклерозом сосудов, сахарным диабетом или гипертензией часто имеются признаки нарушения обмена оксида азота или нарушения во внутриклеточных каскадах передачи сигнала от оксида азота.[11]
Было также показано, что высокое потребление соли снижает образование окиси азота у больных с гипертонической болезнью, хотя биодоступность окиси азота не меняется, остаётся прежней.[12]
Окись азота также образуется в процессе фагоцитоза такими способными к фагоцитозу клетками, как моноциты, макрофаги, нейтрофилы, как часть иммунного ответа на вторжение чужеродных микроорганизмов (бактерий, грибков и др.).[13] Клетки, способные к фагоцитозу, содержат индуцируемую синтазу оксида азота (iNOS), которая активируется γ-интерфероном или сочетанием фактора некроза опухоли со вторым сигналом воспаления.[14][15][16] С другой стороны, β-трансформирующий фактор роста (TGF-β) оказывает сильное угнетающее действие на активность iNOS и биосинтез оксида азота фагоцитами. Интерлейкины 4 и 10 оказывают слабое угнетающее действие на активность iNOS и биосинтез оксида азота соответствующими клетками. Таким образом, иммунная система организма обладает способностью регулировать активность iNOS и доступный фагоцитам арсенал средств иммунного ответа, что играет роль в регуляции процессов воспаления и силы иммунных реакций.[17] Оксид азота секретируется фагоцитами в процессе иммунного ответа в качестве одного из свободных радикалов и является высокотоксичным для бактерий и внутриклеточных паразитов, включая лейшманий[18] и малярийных плазмодиев.[19][20][21] Механизм бактерицидного, противогрибкового и антипротозойного действия оксида азота включает в себя повреждение ДНК бактерий, грибков и простейших[22][23][24] и повреждение железосодержащих белков с разрушением комплексов железа с серой и образованием нитрозилов железа.[25]
В ответ на это многие патогенные бактерии, грибки и простейшие эволюционно развили механизмы устойчивости к образующемуся в процессе фагоцитоза оксиду азота или механизмы его быстрого обезвреживания.[26] Поскольку повышение образования эндогенного оксида азота является одним из маркеров воспаления и поскольку эндогенный оксид азота может оказывать провоспалительное действие при таких состояниях, как бронхиальная астма и бронхообструктивные заболевания, в практической медицине наблюдается повышенный интерес к возможному использованию анализа на содержание оксида азота в выдыхаемом воздухе в качестве простого дыхательного теста при заболеваниях дыхательных путей, сопровождающихся их воспалением. Пониженные уровни эндогенного оксида азота в выдыхаемом воздухе были обнаружены у курильщиков и у велосипедистов, подвергающихся воздействию загрязнения воздуха. В то же время в других популяциях (то есть не среди велосипедистов) с воздействием загрязнения воздуха ассоциировалось повышение уровня эндогенного оксида азота в выдыхаемом воздухе.[27]
Эндогенный оксид азота может привносить свой вклад в повреждение тканей при ишемии и последующей реперфузии, поскольку в процессе реперфузии может образовываться избыточное количество оксида азота, который может реагировать с супероксидом или пероксидом водорода и образовывать сильный и токсичный окислитель, повреждающий ткани — пероксинитрит. Напротив, при отравлении паракватом вдыхание оксида азота способствует повышению выживаемости и лучшему восстановлению больных, поскольку паракват вызывает образование в лёгких больших количеств супероксида и пероксида водорода, снижение биодоступности NO вследствие его связывания с супероксидом и образования пероксинитрита и угнетение активности синтазы оксида азота.
У растений эндогенный оксид азота может производиться одним из четырёх способов:
- При помощи аргинин-зависимой синтазы оксида азота;[28][29][30] (хотя существование у растений прямых гомологов синтазы оксида азота животных всё ещё является предметом дискуссий и признаётся не всеми специалистами),[31]
- При помощи находящейся в плазматической мембране растительных клеток нитрат-редуктазы, восстанавливающей усваиваемые из почвы нитраты и нитриты;
- При помощи электронного транспорта, происходящего в митохондриях;
- При помощи неферментативного окисления аммиака или неферментативного восстановления нитратов и нитритов.
У растений эндогенный оксид азота также является сигнальной молекулой (газотрансмиттером), способствует снижению или предотвращению оксидативного стресса клеток, а также играет роль в защите растений от патогенных микроорганизмов и грибков. Было показано, что воздействие низких концентраций экзогенного оксида азота на срезанные цветы и другие растения увеличивает продолжительность времени до их увядания, пожелтения и осыпания листьев и лепестков.[32]
Два важнейших механизма, при помощи которых эндогенный оксид азота проявляет своё биологическое действие на клетки, органы и ткани — это S-нитрозилирование тиоловых соединений (включая тиоловые группы серосодержащих аминокислот, таких, как цистеин) и нитрозилирование ионов переходных металлов. S-нитрозилирование означает обратимое преобразование тиоловых групп (например, цистеиновых остатков в составе молекул белков) в S-нитрозотиолы (RSNO). S-нитрозилирование является важным механизмом динамической, обратимой посттрансляционной модификации и регуляции функций многих, если не всех, основных классов белков.[33] Нитрозилирование ионов переходных металлов подразумевает связывание NO с ионом переходного металла, такого, как железо, медь, цинк, хром, кобальт, марганец, в том числе с ионами переходных металлов в составе простетических групп или активных каталитических центров металлоферментов. В этой роли NO является нитрозильным лигандом. Типичные случаи нитрозилирования ионов переходных металлов включают в себя нитрозилирование гем-содержащих белков, таких, как цитохром, гемоглобин, миоглобин, что приводит к нарушению функции белка (в частности, невозможности гемоглобина выполнять свою транспортную функцию, или инактивации фермента). Особенно важную роль играет нитрозилирование двухвалентного железа, поскольку связывание нитрозильного лиганда с ионом двухвалентного железа особенно сильное и приводит к образованию очень прочной связи. Гемоглобин является важным примером белка, функция которого может изменяться под влиянием NO обоими способами: NO может как непосредственно связываться с железом в составе гема в реакции нитрозилирования, так и образовывать S-нитрозотиолы при S-нитрозилировании серосодержащих аминокислот в составе гемоглобина.[34]
Таким образом, существует несколько механизмов, при помощи которых эндогенный оксид азота оказывает влияние на биологические процессы в живых организмах, клетках и тканях. Эти механизмы включают окислительное нитрозилирование железосодержащих и других металлосодержащих белков, таких, как рибонуклеотид-редуктаза, аконитаза, активацию растворимой гуанилатциклазы с повышением образования цГМФ, стимуляцию АДФ-зависимого рибозилирования белков, S-нитрозилирование сульфгидрильных (тиоловых) групп белков, приводящее к их посттрансляционной модификации (активации либо инактивации), активацию регулируемых факторов транспорта железа, меди и других переходных металлов.[35] Было также показано, что эндогенный оксид азота способен активировать ядерный фактор транскрипции каппа (NF-κB) в мононуклеарных клетках периферической крови. А известно, что NF-κB является важным фактором транскрипции в регуляции процессов апоптоза и воспаления, и в частности важным фактором транскрипции в процессе индукции экспрессии гена индуцируемой синтазы оксида азота. Таким образом, продукция эндогенного оксида азота саморегулируется — повышение уровня NO угнетает дальнейшую экспрессию индуцируемой синтазы оксида азота и предотвращает чрезмерное повышение её уровня и чрезмерное повреждение тканей организма хозяина в процессе воспаления и иммунного ответа.[36]
Известно также, что вазодилатирующее действие оксида азота опосредуется в основном через стимуляцию им активности растворимой гуанилатциклазы, являющейся гетеродимерным ферментом, активирующимся при нитрозилировании. Стимуляция активности гуанилатциклазы приводит к накоплению циклического ГМФ. Увеличение концентрации в клетке циклического ГМФ приводит к повышению активности протеинкиназы G. Протеинкиназа G, в свою очередь, фосфорилирует ряд важных внутриклеточных белков, что приводит к обратному захвату ионов кальция из цитоплазмы во внутриклеточные хранилища и к открытию активируемых кальцием калиевых каналов. Снижение концентрации ионов кальция в цитоплазме клетки приводит к тому, что киназа лёгкой цепи миозина, активируемая кальцием, теряет активность и не может фосфорилировать миозин, что приводит к нарушению образования в молекуле миозина «мостиков» и нарушению его свёртывания в более компактную структуру (сокращения), а следовательно и к расслаблению гладкомышечной клетки. А расслабление гладкомышечных клеток стенок сосудов ведёт к расширению сосудов (вазодилатации) и увеличению кровотока.[37]
См. также
Примечания
- ↑ 1 2 http://www.cdc.gov/niosh/npg/npgd0448.html
- ↑ Weller, Richard, Could the sun be good for your heart? TedxGlasgow. Filmed March 2012, posted January 2013
- ↑ Roszer, T (2012) The Biology of Subcellular Nitric Oxide. ISBN 978-94-007-2818-9
- ↑ Stryer, Lubert. Biochemistry, 4th Edition. — W.H. Freeman and Company, 1995. — P. 732. — ISBN 0-7167-2009-4.
- ↑ Plant-based Diets | Plant-based Foods | Beetroot Juice | Nitric Oxide Vegetables (неопр.) (недоступная ссылка). Berkeley Test. Дата обращения 4 октября 2013. Архивировано 4 октября 2013 года.
- ↑ Ghosh, S. M.; Kapil, V.; Fuentes-Calvo, I.; Bubb, K. J.; Pearl, V.; Milsom, A. B.; Khambata, R.; Maleki-Toyserkani, S.; Yousuf, M.; Benjamin, N.; Webb, A. J.; Caulfield, M. J.; Hobbs, A. J.; Ahluwalia, A. Enhanced Vasodilator Activity of Nitrite in Hypertension: Critical Role for Erythrocytic Xanthine Oxidoreductase and Translational Potential (англ.) // Hypertension : journal. — 2013. — Vol. 61, no. 5. — P. 1091—1102. — DOI:10.1161/HYPERTENSIONAHA.111.00933. — PMID 23589565.
- ↑ Webb, A. J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; MacAllister, R.; Hobbs, A. J.; Ahluwalia, A. Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite (англ.) // Hypertension : journal. — 2008. — Vol. 51, no. 3. — P. 784—790. — DOI:10.1161/HYPERTENSIONAHA.107.103523. — PMID 18250365.
- ↑ Hezel, MP; Weitzberg, E. The oral microbiome and nitric oxide homoeostasis (неопр.) // Oral Diseases. — 2013. — С. n/a. — DOI:10.1111/odi.12157.
- ↑ Green, Shawn J. Turning DASH Strategy into Reality for Improved Cardio Wellness Outcomes: Part II (неопр.). Real World Health Care (25 июля 2013). Дата обращения 4 октября 2013.
- ↑ Proctor, P. H. Endothelium-Derived Relaxing Factor and Minoxidil: Active Mechanisms in Hair Growth (англ.) // Archives in Dermatology : journal. — 1989. — August (vol. 125, no. 8). — P. 1146. — DOI:10.1001/archderm.1989.01670200122026. — PMID 2757417.
- ↑ Dessy, C.; Ferron, O. Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature (англ.) // Current Medical Chemistry – Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry : journal. — 2004. — Vol. 3, no. 3. — P. 207—216. — DOI:10.2174/1568014043355348.
- ↑ Osanai, T; Fujiwara, N; Saitoh, M; Sasaki, S; Tomita, H; Nakamura, M; Osawa, H; Yamabe, H; Okumura, K. Relationship between salt intake, nitric oxide, and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease (англ.) // Blood purification : journal. — 2002. — Vol. 20, no. 5. — P. 466—468. — DOI:10.1159/000063555. — PMID 12207094.
- ↑ Green, SJ; Mellouk, S; Hoffman, SL; Meltzer, MS; Nacy, C. A. Cellular mechanisms of nonspecific immunity to intracellular infection: Cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes (англ.) // Immunology letters : journal. — 1990. — Vol. 25, no. 1—3. — P. 15—9. — DOI:10.1016/0165-2478(90)90083-3. — PMID 2126524.
- ↑ Gorczyniski and Stanely, Clinical Immunology. Landes Bioscience; Austin, TX. ISBN 1-57059-625-5
- ↑ Green, SJ; Nacy, CA; Schreiber, RD; Granger, DL; Crawford, RM; Meltzer, MS; Fortier, A. H. Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice (англ.) // Infection and immunity (англ.)русск. : journal. — 1993. — Vol. 61, no. 2. — P. 689—698. — PMID 8423095.
- ↑ Kamijo, R; Gerecitano, J; Shapiro, D; Green, SJ; Aguet, M; Le, J; Vilcek, J. Generation of nitric oxide and clearance of interferon-gamma after BCG infection are impaired in mice that lack the interferon-gamma receptor (англ.) // Journal of inflammation : journal. — 1995. — Vol. 46, no. 1. — P. 23—31. — PMID 8832969.
- ↑ Green, SJ; Scheller, LF; Marletta, MA; Seguin, MC; Klotz, FW; Slayter, M; Nelson, BJ; Nacy, C. A. Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens (англ.) // Immunology letters : journal. — 1994. — Vol. 43, no. 1—2. — P. 87—94. — DOI:10.1016/0165-2478(94)00158-8. — PMID 7537721.
- ↑ Green, SJ; Crawford, RM; Hockmeyer, JT; Meltzer, MS; Nacy, C. A. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha (англ.) // Journal of immunology (англ.)русск. : journal. — 1990. — Vol. 145, no. 12. — P. 4290—4297. — PMID 2124240.
- ↑ Seguin, M. C.; Klotz, FW; Schneider, I; Weir, JP; Goodbary, M; Slayter, M; Raney, JJ; Aniagolu, JU; Green, S. J. Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: Involvement of interferon gamma and CD8+ T cells (англ.) // Journal of Experimental Medicine (англ.)русск. : journal. — Rockefeller University Press (англ.)русск., 1994. — Vol. 180, no. 1. — P. 353—358. — DOI:10.1084/jem.180.1.353. — PMID 7516412.
- ↑ Mellouk, S; Green, SJ; Nacy, CA; Hoffman, S. L. IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism (англ.) // Journal of immunology (англ.)русск. : journal. — 1991. — Vol. 146, no. 11. — P. 3971—3976. — PMID 1903415.
- ↑ Klotz, FW; Scheller, LF; Seguin, MC; Kumar, N; Marletta, MA; Green, SJ; Azad, A. F. Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites (англ.) // Journal of immunology (англ.)русск. : journal. — 1995. — Vol. 154, no. 7. — P. 3391—3395. — PMID 7534796.
- ↑ Wink, D.; Kasprzak, K.; Maragos, C.; Elespuru, R.; Misra, M; Dunams, T.; Cebula, T.; Koch, W.; Andrews, A.; Allen, J.; Et, al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors (англ.) // Science : journal. — 1991. — Vol. 254, no. 5034. — P. 1001—1003. — DOI:10.1126/science.1948068. — PMID 1948068.
- ↑ Nguyen, T.; Brunson, D.; Crespi, C. L.; Penman, B. W.; Wishnok, J. S.; Tannenbaum, S. R. DNA Damage and Mutation in Human Cells Exposed to Nitric Oxide in vitro (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1992. — Vol. 89, no. 7. — P. 3030. — DOI:10.1073/pnas.89.7.3030. Free text.
- ↑ Li, Chun-Qi; Pang, Bo; Kiziltepe, Tanyel; Trudel, Laura J.; Engelward, Bevin P.; Dedon, Peter C.; Wogan, Gerald N. Threshold Effects of Nitric Oxide-Induced Toxicity and Cellular Responses in Wild-Type and p53-Null Human Lymphoblastoid Cells (англ.) // Chemical Research in Toxicology (англ.)русск. : journal. — 2006. — Vol. 19, no. 3. — P. 399—406. — DOI:10.1021/tx050283e. — PMID 16544944. free text
- ↑ Hibbs, John B.; Taintor, Read R.; Vavrin, Zdenek; Rachlin, Elliot M. Nitric oxide: A cytotoxic activated macrophage effector molecule (англ.) // Biochemical and Biophysical Research Communications (англ.)русск. : journal. — 1988. — Vol. 157, no. 1. — P. 87—94. — DOI:10.1016/S0006-291X(88)80015-9. — PMID 3196352.
- ↑ Janeway, C. A. Immunobiology: the immune system in health and disease. — 6th. — New York : Garland Science, 2005. — ISBN 0-8153-4101-6.
- ↑ Jacobs, Lotte; Nawrot, Tim S; De Geus, Bas; Meeusen, Romain; Degraeuwe, Bart; Bernard, Alfred; Sughis, Muhammad; Nemery, Benoit; Panis, Luc. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study (англ.) // Environmental Health (англ.)русск. : journal. — 2010. — Vol. 9. — P. 64. — DOI:10.1186/1476-069X-9-64. — PMID 20973949.
- ↑ Corpas, F. J.; Barroso, JB; Carreras, A; Quirós, M; León, AM; Romero-Puertas, MC; Esteban, FJ; Valderrama, R; Palma, JM; Sandalio, LM; Gómez, M; Del Río, L. A. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 2004. — Vol. 136, no. 1. — P. 2722—2733. — DOI:10.1104/pp.104.042812. — PMID 15347796.
- ↑ Corpas, F. J.; Barroso, Juan B.; Carreras, Alfonso; Valderrama, Raquel; Palma, José M.; León, Ana M.; Sandalio, Luisa M.; Del Río, Luis A. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development (англ.) // Planta : journal. — 2006. — Vol. 224, no. 2. — P. 246—254. — DOI:10.1007/s00425-005-0205-9. — PMID 16397797.
- ↑ Valderrama, R.; Corpas, Francisco J.; Carreras, Alfonso; Fernández-Ocaña, Ana; Chaki, Mounira; Luque, Francisco; Gómez-Rodríguez, María V.; Colmenero-Varea, Pilar; Del Río, Luis A.; Barroso, Juan B. Nitrosative stress in plants (англ.) // FEBS Lett (англ.)русск. : journal. — 2007. — Vol. 581, no. 3. — P. 453—461. — DOI:10.1016/j.febslet.2007.01.006. — PMID 17240373.
- ↑ Corpas, F. J.; Barroso, Juan B.; Del Rio, Luis A. Enzymatic sources of nitric oxide in plant cells – beyond one protein–one function (англ.) // New Phytologist (англ.)русск. : journal. — 2004. — Vol. 162, no. 2. — P. 246—247. — DOI:10.1111/j.1469-8137.2004.01058.x.
- ↑ Siegel-Itzkovich J. Viagra makes flowers stand up straight // BMJ. — 1999. — 31 июля (т. 319, № 7205). — С. 274—274. — ISSN 0959-8138. — DOI:10.1136/bmj.319.7205.274a. [исправить]
- ↑ van Faassen, E. and Vanin, A. (eds.) (2007) Radicals for life: The various forms of nitric oxide. Elsevier, Amsterdam, ISBN 978-0-444-52236-8
- ↑ van Faassen, E. and Vanin, A. (2004) «Nitric Oxide», in Encyclopedia of Analytical Science, 2nd ed., Elsevier, ISBN 0-12-764100-9.
- ↑ Shami, PJ; Moore, JO; Gockerman, JP; Hathorn, JW; Misukonis, MA; Weinberg, J. B. Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells (англ.) // Leukemia research : journal. — 1995. — Vol. 19, no. 8. — P. 527—533. — DOI:10.1016/0145-2126(95)00013-E. — PMID 7658698.
- ↑ Kaibori M., Sakitani K., Oda M., Kamiyama Y., Masu Y. and Okumura T. Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-κB activation in rat hepatocytes (англ.) // J. Hepatol. : journal. — 1999. — Vol. 30, no. 6. — P. 1138—1145. — DOI:10.1016/S0168-8278(99)80270-0. — PMID 10406194.
- ↑ Rhoades, RA. Medical physiology 2nd edition / RA Rhoades, GA Tanner. — 2003.
Оксиды азота — Википедия
Материал из Википедии — свободной энциклопедии
Эта статья описывает оксиды азота как химические соединения; об образовании и способах сокращения выбросов оксидов азота при горении см.: NOx (оксиды азота).Окси́ды азо́та — неорганические бинарные соединения азота с кислородом.
Список оксидов
Известны 10 соединений азота с кислородом. Кроме пяти классических оксидов азота — закиси азота N2O, окиси азота NO, оксида азота(III) N2O3, диоксида азота NO2 и оксида азота(V) N2O5 — известны также димер диоксида азота N2O4 и 4 малостабильных соединения: нитрозилазид NON3, нитрилазид NO2N3, тринитрамид N(NO2)3 и нитратный радикал NO3.
N2O(I)
Несолеобразующий оксид. При нагревании разлагается на азот и кислород. При высоких концентрациях N2O возбуждает нервную систему («веселящий газ»). В медицине N2O применяют как слабое средство для наркоза, токсичен. Также N2O называют закисью азота. Закись азота иногда используется для улучшения технических характеристик двигателей внутреннего сгорания. В случае автомобильных применений вещество, содержащее закись азота, и горючее впрыскиваются во впускной (всасывающий) коллектор двигателя, что приводит к следующим результатам:
- снижает температуру всасываемого в двигатель воздуха, обеспечивая плотный поступающий заряд смеси;
- увеличивает содержание кислорода в поступающем заряде;
- повышает скорость (интенсивность) сгорания в цилиндрах двигателя.
NO(II)
Оксид азота NO (монооксид азота) — бесцветный газ, незначительно растворим в воде. Не взаимодействует с водой, растворами кислот и щелочей. Оксид азота(II) — очень реакционное соединение, может вступать в реакции присоединения с рядом солей (нитрозосоли), с галогенами (напр., нитрозилхлорид NOCl), органическими соединениями. При обычной температуре NO соединяется с кислородом с образованием NO2. Оксид NO получают каталитическим окислением аммиака при производстве азотной кислоты. Ядовит.
N2O3(III)
Оксид N2O3 (триоксид диазота, азотистый ангидрид) — темно-синяя жидкость, неустойчивая при обычных условиях, взаимодействует с водой, образуя азотистую кислоту HNO2.
NO2(IV)
Оксид азота NO2 (диоксид азота) — бурый ядовитый газ, тяжелее воздуха, легко сжижается. При комнатной температуре NO2 находится в смеси с его бесцветным димером N2O4, приблизительно 1:1. Взаимодействует с водой:
- 2NO2+h3O→HNO3+HNO2{\displaystyle {\mathsf {2NO_{2}+H_{2}O\rightarrow HNO_{3}+HNO_{2}}}}
и растворами щелочей:
- 2NO2+2NaOH→NaNO3+NaNO2+h3O{\displaystyle {\mathsf {2NO_{2}+2NaOH\rightarrow NaNO_{3}+NaNO_{2}+H_{2}O}}}
Сильный окислитель. Многие вещества (уголь, сера, фосфор, органические соединения) могут гореть в NO2. Этот оксид окисляет SO2 до SO3, на этой реакции основан нитрозный метод получения серной кислоты. Раздражает дыхательные пути, при больших концентрациях появляется отёк легких.
N2O5(V)
Оксид азота N2O5 (пентаоксид диазота, азотный ангидрид) — бесцветное кристаллическое вещество, легко разлагается на NO2 и О2. Сильный окислитель. В воде легко растворяется с образованием азотной кислоты HNO3.
- N2O5+h3O→2HNO3{\displaystyle {\mathsf {N_{2}O_{5}+H_{2}O\rightarrow 2HNO_{3}}}}