Перечислите функции углеводов. какие клетки наиболее богаты углеводами?
Углеводами назвали органические вещества, общую формулу которых можно записать как Cnh3nOn. Они являются основным продуктом фотосинтеза, поэтому больше всего этих веществ в клетках растений.
Виды углеводов
По количеству атомов карбона (углерода) в молекулах углеводы делятся на:
- моносахариды — в состав молекулы входит от 3 до 10 атомов углерода;
- олигосахариды — в их состав входит от 2 до 10 остатков моносахаридов;
- полисахариды — биополимеры, мономерами которых выступают моносахариды.
Масса молекул углеводов оказывает влияние на их свойства. Так, глюкоза и другие моносахариды, олигосахариды (сахароза, лактоза) сладкие и хорошо растворимы в воде, а вот полисахариды — целлюлоза, хитин или крахмал — не растворяются и безвкусны.
Функции углеводов
Диетологи определили, что в дневном рационе соотношение белков, жиров и углеводов должно быть, соответственно, 1:1:4.
- Энергетическая. Именно эти вещества обеспечивают энергией все живые организмы. В энергетическом обмене основное участие принимает глюкоза: при окислении 1 г этого моносахарида энергии выделяется 17,2 кДж.
- Строительная или пластическая. Полисахарид целлюлоза — основной компонент клеточной стенки растительных клеток, а из другого полисахарида — хитина — состоит оболочка клеток грибов и хитиновый покров Членистоногих. Эта функция проявляется еще и в том, что такие пентозы как рибоза и дезоксирибоза являются обязательной составляющей частью РНК и ДНК.
- Запасающая. Углеводы откладываются в запас. У растений в виде крахмала, сахарозы или лактозы. У животных — в виде гликогена, который запасается в их печени.
- Рецепторная. Эта функция присуща только животным клеткам.
В них есть особый слой — гликокаликс, который представляет собой соединение некоторых мембранных белков с отдельными молекулами полисахаридов. Такие комплексы называют гликопротеидами. Они обеспечивают восприятие клеточной мембраной различных раздражений.
Углеводы — это… Что такое Углеводы?
Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.
Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных
Простые и сложные
Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов
Моносахариды
Распространённый в природе моносахарид — бета-D-глюкоза.Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2]

В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) — шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) — дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов
Дисахариды
Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства.
Олигосахариды
О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее
Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].
Полисахариды
Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.
Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (
Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.
Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].
Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.
Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].
Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].
Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].
Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].
Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].
Пространственная изомерия
Слева D-глицеральдегид, справа L-глицеральдегид. |
Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.
Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].
Биологическая роль
В живых организмах углеводы выполняют следующие функции:
- Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
- Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
- Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
- Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
- Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
- Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
- Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.
Биосинтез
В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.
Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:
- Cx(H2O)y + xO2 → xCO2 + yH2O + энергия.
В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:
- xCO2 + yH2O → Cx(H2O)y + xO2
Обмен
Основная статья: Углеводный обмен
Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:
- Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
- Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
- Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
- Взаимопревращение гексоз.
- Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
- Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).
Важнейшие источники
Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.
Для обозначения количества углеводов в пище используется специальная хлебная единица.
К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.
Список наиболее распространенных углеводов
Примечания
- ↑ 1 2 3 4 Н. А. АБАКУМОВА, Н. Н. БЫКОВА. 9. Углеводы // Органическая химия и основы биохимии.
Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
- ↑ 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
- ↑ 1 2 3 4 5 Т.
Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
- ↑ Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8
- ↑ 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4
Ссылки
- Углеводы (рус.). — строение и химические свойства.(недоступная ссылка — история) Проверено 1 июня 2009.
Углеводы | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Общие: | Альдозы · Кетозы · Фуранозы · Пиранозы | ||||||||||||||
Геометрия | Аномеры · Мутаротация · Проекция Хоуорса | ||||||||||||||
Моносахариды |
| ||||||||||||||
Мультисахариды | |||||||||||||||
Производные углеводов |
B05A |
| ||
---|---|---|---|
B05B |
| ||
B05C |
| ||
B05D |
| ||
B05X |
| ||
B05Z |
Метаболическая и гедонистическая функция углеводов
Читайте также
2.

2. «Метаболическая» и «структурная» гипотезы Группу «метаболических» гипотез составляют все те представления о природе стабильности, в которых фигурирует какое-то активирующее вещество: оно может некоторое время находиться вне ДНК, но оно должно быть способно
Метаболическая мельница
Метаболическая мельница — Кажется, вы опять собираетесь говорить о кормах? Лучше бы сказали мне: права или нет моя жена, решительно отказываясь покупать кур в магазине? Она утверждает, что они не так вкусны, как рыночные… — Верно. Если не принять соответствующих мер, то
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА КОРОЛЕВА УМЕРЛА — ДА ЗДРАВСТВУЕТ КОРОЛЕВА! То, что мы знаем, — ограниченно,
а то, чего мы не знаем, — бесконечно. П. Лаплас Наука всегда оказывается не права.
Она никогда не решит вопроса,
не поставив при этом десятка новых.
Б. Шоу
Итак,
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА КОРОЛЕВА УМЕРЛА — ДА ЗДРАВСТВУЕТ КОРОЛЕВА! То, что мы знаем, — ограниченно, а то, чего мы не знаем, — бесконечно. П. Лаплас Наука всегда оказывается не права. Она никогда не решит вопроса, не поставив при этом десятка новых. Б. Шоу Итак,
ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ
ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ
Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9/10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что
Переваривание углеводов
Переваривание углеводов В слюне содержится фермент ?-амилаза, расщепляющая ?-1,4-гликозидные связи внутри молекул полисахаридов.Переваривание основной массы углеводов происходит в двенадцатиперстной кишке под действием ферментов панкреатического сока – ?-амилазы,
Нарушения переваривания и всасывания углеводов
Нарушения переваривания и всасывания углеводов В основе патологии переваривания и всасывания углеводов могут быть причины двух типов:1. Дефекты ферментов, участвующих в гидролизе углеводов в кишечнике.2. Нарушения всасывания продуктов переваривания углеводов в клетки
Обезвреживающая функция печени
Обезвреживающая функция печени
Печень является главным органом, где про обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей
Эндокринная функция половых желез
Эндокринная функция половых желез На функции половых желез влияют релизинг-гормоны гипофиза и гормоны, выделяемые непосредственно половыми железами.Мужские половые гормоны.Гормоны, выделяемые мужскими половыми железами по своей природе являются стероидами и
11.1. Социальная функция агрессивности
11.1. Социальная функция агрессивности Симпатическая нервная система, выбрасывая адреналин, резко повышает активность, ускоряет бег, усиливает обороноспособность, решительность. Ее антагонистом является центральная нервная система, которая уравновешивает порыв
ОБМЕН УГЛЕВОДОВ
ОБМЕН УГЛЕВОДОВ
Следует еще раз подчеркнуть, что процессы, происходящие в организме, представляют собой единое целое, и только для удобства изложения и облегчения восприятия рассматриваются в учебниках и руководствах в отдельных главах. Это относится и к разделению на
Значение углеводов
Значение углеводов Углеводы играют особую роль среди веществ, поступающих в организм с пищей, поскольку именно они являются основным, а для нервных элементов – единственным источником энергии для клеток. Поэтому уровень углеводов в крови – один из важнейших
Психотропный эффект углеводов
Психотропный эффект углеводов Хлещет вверх моя глюкоза! В час последний, роковой В виде уха, в виде розы Появись передо мной. Н. Олейников Как было описано в предыдущем разделе, введение углеводов в организм улучшает состояние животных или человека со слабым
Гуморальные влияния на различные этапы обмена углеводов
Гуморальные влияния на различные этапы обмена углеводов
Рассмотрим превращения углеводов, поступающих в организм с пищей (рис. 2.11). Рис. 2.11. Схема превращения углеводов в организме (Е означает «энергия»). Поступление глюкозы в кровь происходит в результате того, что в
6.3. Эндокринная функция двенадцатиперстной кишки
6.3. Эндокринная функция двенадцатиперстной кишки Как отмечено выше, к началу 50-х годов нами были преодолены технические трудности, связанные с полным и атравматичным удалением двенадцатиперстной кишки и с пересадкой панкреатического и общего желчного протоков в тощую
6.3. Эндокринная функция двенадцатиперстной кишки
6.3. Эндокринная функция двенадцатиперстной кишки Как отмечено выше, к началу 50-х годов нами были преодолены технические трудности, связанные с полным и атравматичным удалением двенадцатиперстной кишки и с пересадкой панкреатического и общего желчного протоков в тощую
Углеводы функции — Справочник химика 21
Функции углеводов в живых организмах разнообразны.
В оценке биохимической роли углеводов в последние десятилетия произошли серьезные изменения. Если раньше углеводы рассматривали лишь как источники энергии для животных организмов (глюкоза гликоген как резервное вещество) и пассивный строительный материал для создания остова растительных клеток (клетчатка), то в настоящее время знают о многих других функциях углеводов. [c.304]
Цинк — один из сельскохозяйственных микроэлементов при недостатке его в почве у растений нарушается обмен белков и углеводов, расстраиваются функции окислительно-восстановительных ферментов, может снижаться содержание хлорофилла. Подкормка цинковыми микроудобрениями устраняет заболевания растений, благоприятствует их росту. [c.443]
Гидролизу подвергаются разные вещества соли, галогенан-пгдриды, карбиды, углеводы, белки, жиры и т. д. Разрушение горных пород обусловлено в значительной мере гидролизом составляющих их минералов — силикатов. В живых организмах происходит гидролиз белков, полисахаридов и других органических веществ. Состав и функция крови обусловлены гидролизом солей, растворенных в плазме. Осахаривание крахмала, гидролиз древесины, получение мыла и многие другие важные производства основаны иа гидролизе. [c.219]
Углеводы — это обширный класс органических соединений с эмпирической формулой С (Н, 0) , образование которых связано с процессом фотосинтеза. Углеводы в растениях находятся в виде моносахаридов (глюкоза — С Н О ), олигосахаридов (крахмал) и полисахаридов (целлюлоза — (С Н О ) , где п > 10000. Целлюлоза — основной строительный материал растительных тканей. Она выполняет в растениях опорные функции и придает им механическую прочность. По распространенности органических веществ на земном шаре она занимает первое место. [c.47]
Углеводы — органические вещества со смешанными функциями, так как молекулы их содержат различные функциональные группы — гидроксильные—ОН и карбоксильные =С0 [c. 353]
Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]
В отличие от слов белки или углеводы слово жиры часто используется в обиходе, и ему иногда придается неприятный смысловой оттенок. О человеке с избыточным весом можно услышать, что он слишком жирный . Жиры — один из основных видов биомолекул, имеющих свои специфические свойства и функции так же, как и углеводы. [c.247]
Характер изменения функции кислотности Гаммета (см. рис. 7) показывает, что активность серной кислоты в значительной степени зависит от содержания в ней воды и резко снижается с увеличением концентрации кислоты. Это особенно заметно в области высоких концентраций. Поскольку функция кислотности серной кислоты в растворе углеводо родов намного больше, чем в воде, снижение активности катализатора при алкилировании будет в первую очередь определяться его разбавлением водой и в меньшей мере растворением в нем высокомолекулярных углеводородов — продуктов побочных реакций. [c.72]
Кислород-, серу-, азотсодержащие соедршения. Элементоорганические соединения. Соединения со смешанными функциями. Гетероциклические соединения Углеводы. Белки [c.1]
Все животные и растительные ткани состоят из различных химических соединений белков, углеводов, жиров и витаминов. И хотя все эти вещества необходимы для нормального развития организма, наибольшее значение имеют белки. Именно они служат той основной материей, из которой состоят все части отдельной клетки и целого организма. Белки являются высшей ступенью развития материи и с ними неразрывно связаны все неисчислимо многообразные проявления жизни, начиная с простейших функций самых примитивных существ и кончая сложнейшими функциями человеческой деятельности. [c.336]
Многие вещества входят в живые организмы в форме макромолекул, полимеров с высокой молекулярной массой. Биополимеры можно подразделить на три большие класса белки, углеводы и нуклеиновые кислоты. В пище животных белки, углеводы и молекулы из класса соединений, называемого жирами, служат важнейшими источниками энергии. Кроме того, полимерные углеводы выполняют функции важнейших строительных материалов, придающих форму растительным организмам, а [c.443]
Циклическая структура глюкозы. Хотя для обозначения простых углеводов часто удобно пользоваться формулами с открытыми цепями, более корректно изображать структуры пентоз и гексоз в виде циклов, где карбонильная функция превращается в полуацетальную (разд. 7.1.4,А) в результате соединения с одной из гидроксильных групп в той же молекуле. Обычно таким путем образуются только пяти- и шестичленные циклы, называемые фуранозной и пиранозной структурами в соответствии с названиями родоначальных гетероциклических соединений — фурана и пирана. [c.265]
Наряду с жирами в состав животных и растительных организмов входят вещества, относящиеся к классам углеводов и белков. В противоположность рассматривавшимся выше производным, содержавшим в молекуле, помимо углеводородного радикала, характерную группу (Он, СНО и т. д.) какого-либо одного типа, углеводы и белки являются соединениями со с м е ш а н н о й функцией. [c.540]
Полисахариды выполняют ряд функций в организме. Например, создание запасов углеводов (крахмала и гликогена). Они могут образовывать координационные соединения с рядом ионов металлов. [c.564]
Ферментативные процессы (ферментативный катализ) лежат в основе жизнедеятельности всех организмов. В химические функции живых клеток входит разложение и синтез белков, жиров, углеводов и других очень сложных веществ. Благодаря высокой специфичности и активности ферментов за короткое время и при сравнительно низких температурах в живом организме образуются необходимые для жизнедеятельности соединения. [c.112]
Таким образом, началась новая эра изучения химии фосфора — столь многообразного в своих функциях элемента 3-го периода Системы Д. И. Менделеева при этом начали слегка приоткрываться тайны процесса фотосинтеза углеводов и одновременно стали ясны новые подробности в учении о каталитическом действии железа с его уникальными свойствами. [c.345]
Мы ограничимся изложением известных в настоящее время данных о структуре и биологической функции наиболее важных соединений — белков, нуклеиновых кислот, жиров и углеводов, а также сообщим некоторые сведения о путях синтеза белка в организме. [c.435]
Для первого направления основное значение имеют белки и различные вещества, характеризующиеся их небольшим содержанием в пище ( витамины , минеральные соли и т. п.). Функцию топлива в организме выполняют главным образом ж и р ы и углеводы. При приблизительной оценке доставляемой организму теплоты можно в среднем считать, что каждый грамм пищевого белка дает 19 кДж, жира — 38 кДж, углевода — 17 кДж. [c.320]
Эти флавины выполняют многообразные биологические функции катализируют электронный перенос в редокс-реакциях аминов, спиртов и кислот активируют молекулярный кислород и восстанавливают его в супероксид переносят атомный кислород на субстрат и включают его в молекулу воды. Они участвуют и в других реакциях метаболизма углеводов, липидов и белков. [c.171]
В природе ионы кобальта встречаются в степени окисления II и III, однако наиболее важное биологическое соединение кобальта— это витамин В12, или кобаламин, в котором присутствует Со(1П) [256] (рис. 6.10). Кобаламин и близкие к нему вещества выполняют разнообразные биологические функции, особенно это касается бактерий. Он необходим для человеческого организма и, вероятно, для больщинства животных и растений. Важную роль он играет в реакциях с участием остатков углеводов, жиров и белков для выработки in vivo. Пернициозная анемия — тяжелое заболевание, встречающееся у пожилых людей. Эта болезнь у млекопитающих обычно сопровождается повышенным выделением с мочой метилмалоновой кислоты. В настоящее время эту болезнь успешно лечат инъекциями витамина В12. [c.381]
Углеводы стоят у истоков всего органического вещества биосферы — это первые продукты фотосинтеза. Они служат основны энергетическим ресурсом большинства земных организмов, лежат в основе множества применяемых человеком материалов. Углеводы выполняют сложные й многообразные функции в живых системах. [c.2]
Мы уже говорили о том, что химические исследования в химии углеводов направлены в конечном счете преимущественно на решение проблемы структура — свойство , структура — функция . Один подход к решению — это выделение индивидуальных природных углеводов, установление их структуры и сопоставление полученных сведений с наблюдаемыми свойствами природных углеводов и их биологическими функциями. На этой основе можно сделать те или иные выводы и обобщения о роли структурных факторов в проявлении тех или иных свойств природных соединений. Однако для того, чтобы подтвердить такие заключения, а также для того, чтобы их уточнить и детализировать, очень важно иметь возможность варьировать структуру изучаемых соединений, варьировать целенаправленно, плавно изменяя в них какой-то определенный структурный параметр. И здесь незаменимым оказывается точный синтез как источник модельных объектов исследования с заданной структурой. [c.116]
Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]
Кислородсодержащие производные углеводородов, с которыми мы ознакомились в предыдущих главах, содержат какую-либо одну функциональную группу (например, одноатомные спирты, одноосновные кислоты) или несколько одинаковых функциональных групп (например, многоатомные спирты, двухосновные кислоты). Большое значение имеют органические вещества, в молекулах которых имеются две или несколько различных функциональных групп такие вещества называют соединениями со смешанными функциями. Из кислородсодержащих веществ такого типа мы в этой главе рассмотрим океикислоты, альдегидокислоты и кетонокнслоты, а в главе VIII — оксиальдегиды и оксикетоны (углеводы). [c.190]
Липоевая кислота (1,2-дитиолан-З-валериановая кислота) широко распространена в микроорганизмах, растениях и животных. Она относится к группе кофакторов, содержащих серу, и в природе действует в паре с тиаминпиро-фосфатом (разд, 7.3). Однако по своему действию липоевая кислота принадлежит к другому классу переносящих электроны кофакторов, основная окислительно-восстановительная функция которых заключается в воспроизводстве АТР, Кофактор необходим для синтеза жирных кислот и метаболизма углеводов. [c.428]
Ч. 2. Кислородсодержащие соединения. Азотсодержа1цие соединения. Органические соединения серы. Элементоорганические соединения. Соединения со смешанными функциями. Гетероциклические соединения. Углеводы. Белки. [c.2]
Обращает на себя внимание наличие значительных положительных зарядов на всех углеродных атомах молекулы углевода. Этот вывод делает понятной легкую доступность углеродных атомов углеводов нуклео4)ильной атаке егр можно поставить в связь с общей неустойчивостью углеродного скелета углеводов, склонных к деструкциям и изомеризациям в щелочной среде. Для циклической формы (пентапи ранозы) установлено более высокое значение электронной плотности на Сх по сравнению с нециклической альдегидной структурой из этого естественно вытекает ослабление альдегидных функций полуацетального углерода, что вполне согласуется с опытом. Кислый характер полуацетального гидроксила связан с тем, что отрицательный заряд на полуацетальном кислороде снижен по сравнению с-ч)бычным спиртовым, что ослабляет его связи с протоном. Наконец, в молекуле пиранозы электронная плотность на эндоциклическом кислороде понижена, что снижает его активность при электрофильной атаке молекулы. Таким образом, при раскрытии пиранозного цикла в кислой среде более вероятной представляется атака протона по глико-зидному, а не циклическому кислороду. [c.61]
Изд-во УГНТУ, 2000. — 4.2. Кислород-, серу-, азотсодержащие соединения. Элементоорганические соединения, С. оелинения со смешанными функциями. Гетероциклические соединения. Углеводы. Белки. — 298 с. [c.2]
Углеводы относятся к полифункциональным соединениям. В молекуле моносахарида имеются функциональные группы разных типов группы ОН (спиртовая функция) и группы СО (альдегидная или кетонная функция). Поэтому различают альдегидоспирты (стртоальдегиды, альдозы) и кетоспирты (спиртокетоны, кетозы). [c.224]
Для первого направления основное значение имеют белки и различные вещества, характеризующиеся небольшим содержанием их в пище (витамины, минеральные соли и т. п.). Функцию топлива> в организме выпо,лняют главным образом жиры и углеводы. [c.579]
Углеводное питание занимает важное место в жизни человека. Превращаясь в молочную кислоту, углеводы дают клетке необходимую энергию (1 г углеводов дает 16,74 кДж). Углеводы выполняют детоксирующую (барьерную) функцию, заключающуюся в образовании глюку-роновой кислоты, которая, соединяясь с ксенобиотиками и их метаболитами, дает нетоксичные и легко выводимые из организма вещества. Углеводы снижают накопление в организме кетоновых тел, входят в состав нуклеиновых кислот, регулируют жировой обмен, уменьшают количество потребляемого белка. [c.3]
Принято условно считать, что пептиды, имеющие относительную молекулярную массу до 10000, следует называть полипетидами, а пептиды с большей молекулярной массой — белками (или протеинами от греч. рго1е1о8 — первый, самый главный). Такое название оправдано, поскольку белки являются основой всего живого. Они выполняют самые различные функции, входят в состав клеток и тканей всех живых организмов и наряду с углеводами и жирами являются главной составной частью нашей пищи. [c.424]
Органические соединения, в raлeкyлax которы.к одЕЮвременно присутствуют разные функциональные группы, называются г е т е-р о ф у н к ц и о н а л ь н ы м и (по греч. гетерос — разный). Среди этих веществ можно встретить важнейшие природные продукты, синтетические физиологически активные вещества, красители и другие важные соединения. Химические свойства таких веществ в первом приближении как бы складываются из свойств соответствующих простых функций. В то же время появляются и новые свойства, возникающие как результат взаимного влияния функциональных групп. Познакомимся с этим сначала на примере углеводов, а затем н азотсодержащих гетерофункциональных соединений — аминокислот. Структурную формулу глюкозы можно [c.311]
Моносахариды представляют собой соединения со смешанными функциями. Они содержат альдегидную или кетогруппу и несколько гидроксильных групп, т. е. являются альдегидоспиртами или кетоноспиртами. Следовательно, углеводы являются полигидроксикарбоиильными соединениями. [c.607]
Витамин Bi2 является наиболее активным противоанемическим средством. Механизм действия его недостаточно выяснен, однако доказано, что он участвует в синтезе лабильных метильных групп и в образовании холина, метионина, креатина, нуклеиновых кислот. Он оказывает активное влияние на накопление в эритроцитах соединений, содержащих сульфгидрильные группы участвует в обмене жиров и углеводов. Оказывает благоприятное влияние на функцию печени и нервной системы. Благодаря исследованиям Кастля (1929) стало известно, что для излечения пернициозной анемии, которая ранее протекала со смертельным исходом, необходимы два фактора. Первый получил название внутреннего фактора и содержится в желудочном соке, второй — внешнего фактора, содержится в пищевых продуктах. В 1948 г. Фолкерсу (США) и Смиту (Англия) удалось выделить из печени внешний фактор, оказавшийся витамином и названный витамином или цианокобаламином. [c.680]
Итак, главные источники структурного и функционального многообразия моносахаридов лежат в различном наборе функциональных групп (карбонильные, гидроксильные, карбоксильные, аминогруппы и т. д.) и в не меньшей степени в различиях стереохимии. Последнее надо особо подчеркнуть. В обычном курсе органической химии рассматривают свойства и различия отдельных классов соединений, основанные в первую очередь на различиях бут-леровских структур, и отдельно в виде некоего несколько экзотического приложения — вопросы стереохимии. В химии сахаров такого разделения не может быть. В принципе вся эта область есть органическая стереохимия par ex ellen e , и все многообразие свойств углеводов проистекает прежде всего из их стереохимических различий. Так, например, кардинальные различия свойств и биологической функции целлюлозы и одного из двух компонентов крахмала — амилозы — обусловлены различием кон фигурации лишь одного асимметрического центра элемен тарного звена этих стереоизомерных полисахаридов. [c.10]
Из всего перечисленного наибольшие затруднения вы-зывает избирательное введение. Здесь нет каких-то раз-работанных правил, следуя которым можно механически выбрать необходимую последовательность превращений и типы заш,итных групп. Тем не менее есть ряд хорошо разработанных реакций, ведущих к образованию защит, и ряд принципов обеспечения их региоспецифичности. Так что сейчас грамотный синтетик может составить реальный план синтеза, ведуш его к избирательному освобождению любой функциональной груццы в любом моносахариде. Но, подчеркнем еще раз, это не механическое применение готовых правил, а творческий процесс, тре-буюш ий тщательного учета задач конкретного синтеза и выбора оптимальной схемы из ряда возможных. Позтому не будем пытаться дать, так сказать, алгоритм для избирательной защиты функций, а опишем лишь некоторые элементарные приемы, применяемые в химии углеводов для зтой цели. [c.123]
Введение кетогруппы в производные моносахаридов открывает богатейшие синтетические возможности, связанные с чрезвычайно многообразной реакционной способностью карбонильной группы. Основным путем получения таких кетонов служит окисление производных, содержащих одну вторичную гидроксильную группу. В сравнении с обычными спиртами вторично-спиртовые группы в сахарах поддаются окислению с некоторым трудом. Поэтому для этих целей приходится применять энергичные окислители, такие, как четырехокись рутения или комбинация диметилсульфоксида с реагентами типа ангидридов (уксусный ангидрид, РгО , дицикл огексилкарбодиимид и некоторые другие). Несмотря на некоторую экзотичность этих окислителей, их широко применяют в химии углеводов. Такие методы дают сейчас синтетику возможность окисления практически любой вто-рично-спиртовой группы и, следовательно, введения карбонильной функции в почти любое желаемое положение. [c.128]
Углеводы как органические молекулы
Углеводы – это органические молекулы, которые содержат углерод, водород и кислород в мольном соотношении 1:2:1. Элементы в них объединяются в карбонильную и карбоксильную группы. Их общая формула (CH2O) n.
Так как первые изученные углеводы содержали водорода и кислорода столько же, сколько и в молекуле воды, они и получили своё название (углерод + вода). Вместе с тем есть молекулы, у которых соотношение указанных в формуле химических элементов иное, а некоторые, кроме того, содержат атомы азота, фосфора или серы, но подробная классификация углеводов рассматривается ниже. Источником углеводов является растения, там они синтезируются в процессе фотосинтеза.
Так как углеводы содержат много углеводородных связей (C-H), высвобождающих энергию при окислении, они хорошо подходят для хранения энергии. Эти вещества входят в состав всех живых организмов. В клетках животных их содержание не превышает 10 % сухой массы, в клетках растений их значительно больше – до 90 %.
Классификация углеводов
Углеводы существуют в нескольких формах: моносахаридов, олигосахаридов (в том числе дисахаридов) и полисахаридов.
Углеводы моносахариды
Самые простые углеводы – моносахариды (греч. μόνος «единственный», лат. saccharum «сахар»), или простые сахара. Могут включать от 3 атомов углерода, но те, что играют роль в запасе энергии, содержат 6 атомов углерода: C6H12O6 или (CH2O)6.
Структура моносахаридов.Свойства моносахаридов:
- бесцветность;
- твёрдость кристаллической решётки;
- хорошая растворимость в воде;
- способность к кристаллизации;
- сладкий вкус,
- представление в форме α и β-изомеров.
По количеству атомов углерода в составе молекул, моносахариды делятся на несколько групп:
- триозы (C3),
- тетрозы (C4),
- пентозы (C5),
- гексозы (C6),
- гептозы (C7).
Важнейшими из них являются пентозы и гексозы.
Из тетроз важной является эритроза – один из промежуточных продуктов фотосинтеза растений.
Широко распространены в живом мире пентозы (пятиуглеродные сахара). Эта группа углеводов включает такие важные вещества как рибоза (C5H10O4) и дезоксирибоза (C5H10O5) – сахара, входящие в состав нуклеотидов – мономеров нуклеиновых кислот (ДНК и РНК). Дезоксирибоза отличается от рибозы тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу.
Из гексоз наиболее распространены глюкоза, фруктоза и галактоза. Это стериоизомеры с общей формулой C6H12O6.
Глюкоза – виноградный сахар, в свободном состоянии встречается как в растениях, так и в организмах животных. В зависимости от ориентации карбонильной группы (C = O) при замкнутом кольце, глюкоза может существовать в двух различных формах: альфа (α) и бета (β). У α-глюкозы гидроксильная группа расположена под плоскостью кольца при первом атоме углерода, а у β-глюкозы над плоскостью. Глюкоза — это:
- важнейший источник энергии для всех видов работ в клетке;
- мономер многих олиго- и полисахаридов;
- необходимый компонент крови. Снижение её концентрации ведёт к нарушению работы нервных и мышечных клеток, что может сопровождаться судорогами и обмороком. Уровень содержания глюкозы в крови регулируется нервно-гуморальной системой;
- составная часть почти всех тканей и органов, там она регулирует осмотическое давление;
- помощник печени в выполнении барьерной роли против токсинов.
Фруктоза тоже очень распространена в природе. Отличается от глюкозы положением карбонильного углерода (C = O). Служит мономером олигосахаридов. Большая её часть находится в плодах, поэтому её ещё называют фруктовым сахаром. Много фруктозы в сахарной свёкле и мёде.
Путь её распада в организме короче, что имеет большое значение в питании больных сахарным диабетом, когда глюкоза слабо усваивается клетками.
Мёд, несмотря на многочисленные советы употреблять его вместо сахара, не является идеальным источником углеводов. Он содержит сахар в чистом виде.
Мёд образуется при ферментативном гидролизе цветочного нектара в пищеварительном тракте пчелы и содержит примерно равные количества свободных глюкозы, фруктозы и дисахарид сахарозу.
Сахар, приносящий пользу, находится в молодых овощах, ягодах, фруктах. Вредный для питания сахар – булочки, торты, пирожные, печенья, сладкие газировки, мороженое. В день в идеале можно съедать 50 г сладкого во время обеда или на полдник в качестве десерта.
Галактоза — пространственный изомер глюкозы, отличающийся только расположением гидроксильной группы и водорода около четвёртого атома углерода. Содержится в животных, растениях и некоторых микроорганизмах. Она входит в состав лактозы — молочного сахара, а также в состав некоторых полисахаридов, например лактулозы. В печени и в других органах галактоза превращается в глюкозу.
Различия в структуре этих изомеров влияют на их функции. Их можно различить уже на вкус: фруктоза, например, намного слаще глюкозы. От строения их кольца или цепи зависит и способность быть частью какого-либо полимера.
Углеводы олигосахариды
Олигосахариды (от греч. ὀλίγος — немногий) — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до 10) молекулами моносахаридов. В зависимости от числа молекул моносахаридов, различают: дисахариды, трисахариды, тетрасахариды и т. д. Наиболее распространены среди них дисахариды. Свойства олигосахаридов:
- растворяются в воде;
- мало растворяются в низших спиртах;
- почти не растворяются в других обычных растворителях;
- белые или бесцветные;
- кристаллизуются, но не все, некоторые существуют в форме некристаллических сиропов;
- их сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов.
Связь, образующаяся между двумя моносахаридами, называется гликозидной (тип ковалентной связи, реакция конденсации).
Образование гликозидных связейУглеводы дисахариды
В растениях и многих других организмах моносахариды трансформируется в дисахариды — транспортную форму, предназначенную для удобства перемещения внутри организма. В таком виде она труднее расщепляется и может быть доставлена в нужные места.
Дисахариды, образуется путём связывания двух моносахаридов (др. греч. δuο — два и σaκχαρον — сахар) гликозидной связью. Ферменты, способные разорвать эту связь присутствуют, как правило, только в тканях, которые используют глюкозу. Транспортные формы различаются в зависимости от того из каких моносахаридов состоят данные дисахариды. Кроме глюкозы они могут включать фруктозу и галактозу.
При соединении остатка глюкозы с её структурным изомером фруктозой образуется дисахарид сахароза (тростниковый, или свекловичный сахар). Сахароза — самая распространённая форма транспортных углеводов, которая хранится в клетках растений (в семенах, ягодах, корнях, клубнях, плодах). Играет важную роль в питании животных и человека. В растениях сахароза служит растворимым резервным углеводом, а также транспортной формой продуктов фотосинтеза, которая легко переносится по растению.
Это привычный нам бытовой сахар, который в промышленности вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свёклы (корнеплоды — до 20%).
Уборка сахарного тростникаАвтор: Siebrand
Связывание глюкозы со стериоизомером галактозой приводит к появлению дисахарида лактозы, или молочного сахара. Она есть в молоке всех млекопитающих (2-8,5%), при её помощи звери и человек обеспечивают энергией своё потомство. Взрослые значительно уменьшают потребление молока, так как в их организме нет фермента, нужного для расщепления лактозы. Лактоза используется в микробиологической промышленности для приготовления питательной среды.
Мальтоза, или солодовый сахар — дисахарид, состоящий из двух остатков глюкозы. Концентрируется в прорастающих семенах злаков, в томатах и нектаре некоторых растений. Это основной структурный элемент крахмала и гликогена. Мальтоза гидролизируется на две молекулы глюкозы под действием фермента мальтазы.
Углеводы полисахариды
Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (нескольких десятков и более) молекул моносахаридов. Полисахариды (от греч. полис — много) могут включать остатки одинаковых или разных моносахаридов.
Свойства полисахаридов:
- не растворяются или плохо растворяются в воде;
- не образуют ясно оформленных кристаллов;
- не имеют сладкого вкуса.
Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство из них не способны переварить целлюлозу или другие полисахариды, такие как хитин. Эти углеводы могут усваиваться только некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.
Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, так как они улучшают пищеварение и способствуют лучшей перистальтике кишечника. Основная функция пищевых волокон — способствовать всасыванию других питательных веществ.
Полисахариды различаются между собой составом мономеров, длиной и степенью разветвленности цепей. Они могут иметь линейную неразветвленную (целлюлоза, хитин), разветвленную (гликоген) и смешанную структуру (крахмал представляет собой смесь полисахаридов — примерно на 80 % (по массе) он состоит из разветвленного амилопектина и на 20 % из линейного полисахарида амилозы).
В функциональном отношении различают полисахариды резервного, структурного и защитного назначения. Типичные резервные полисахариды — крахмал и гликоген. К структурным полисахаридам относят целлюлозу (клетчатку). Защитную функцию у животных обеспечивают гепарин и гиалуроновая кислота.
Крахмал и гликоген
Крахмал и гликоген запасают метаболическую энергию.
Крахмал (C6H10O5)n — полимер, мономером которого является α-глюкоза. Состоит из смеси других полисахаридов — амилозы и амилопектина. Амилоза имеет вид длинной цепочки, связанной в спираль, именно такая конфигурация обеспечивает синюю окраску растворимого крахмала при добавлении йода. Амилопектин — древовидно разветвлённая цепь, он в присутствии йода окрашиваются в коричневый цвет. Крахмал — основной резервный углевод растений, являющийся одним из продуктов фотосинтеза. Накапливается в хлоропластах листьев, семенах, клубнях, корневищах, луковицах, откладывается в клетках в виде крахмальных зёрен в специальных органеллых — амилопластах. Содержание крахмала:
- в зерновках риса — до 86%;
- пшеницы — до 75%;
- в клубнях картофеля — до 25%.
Крахмал — основной углевод пищи человека, его расщепляет фермент амилаза. Крахмальные зёрна практически не растворяются в воде, но амилоза набухает при её нагревании, тогда как амилопектин не изменяется даже при очень длительном кипячении.
Гликоген (C6H10O5)n — полисахарид, состоящий из 30 000 остатков α-глюкозы. Его цепочки ветвятся сильнее, чем у крахмала. По типу ветвления он похож на компонент крахмала амилопектин, поэтому его часто называют животным крахмалом. Он не даёт синего окрашивания при контакте с йодом. Гликоген — это запасной углевод животных. Накапливается в печени (до 20%) и в мышцах (4%), в небольшом количестве он найден в почках, клетках мозга и лейкоцитах крови. Чаще всего используется как источник глюкозы для восполнения её запасов в крови. Есть гликоген и в клетках грибов, в том числе и дрожжей. В отличие от крахмала гликоген растворим при комнатной температуре.
Целлюлоза
Целлюлоза — полимер, в котором мономер глюкоза соединяется между собой по типу β. Это основной структурный полисахарид клеточной стенки растений, в нём аккумулируется около 50% всего углерода биосферы. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%.
Молекулы целлюлозы не ветвятся, а собираются в очень прочные волокна из параллельно уложенных цепочек, связанных в пучки водородными соединениями. Они нерастворимы в воде, внешне похожи на часть крахмала — амилозу, с одним отличием — цепи целлюлозы, соединённые по β типу в большинстве живых организмах не расщепляются, так как у них отсутствует нужный для этого фермент целлюлаза. Из-за того, что целлюлоза не может быть разорвана в пищеварительном тракте животных, она может работать как биологический структурный материал. Но некоторым жвачным, например, коровам, переваривать целлюлозу помогают симбиотические микроорганизмы.
Целлюлоза является пищей не только для коров, но и для грибов, микроорганизмов, некоторых протист и животных (термиты). Микроорганизмы, способные расщеплять целлюлозу, входят также в состав микрофлоры толстого кишечника человека.
Хитин
Хитин (фр. chitine, от др.-греч. χιτών: хитон — одежда, кожа, оболочка) — структурный полисахарид, найденный в кутикуле членистоногих и ряда других беспозвоночных (червей, кишечнополостных), клеточных оболочках некоторых грибов и протист. Кроме углерода, водорода и кислорода в его молекулах содержится азот (C8H13NO5)n, этим он отличается от целлюлозы. Состоит из остатков N-ацетилглюкозамина, связанных между собой β-гликозидными связями. Усваивать хитин способны немногие организмы, например некоторые бактерии. Но многие существа продуцируют фермент хитиназу, вероятно в качестве защиты от плесени.
Функции углеводов
В живых организмах углеводы выполняют различные функции, основные из них — энергетическая, запасающая и структурная.
- Энергетическая функция состоит в том, что углеводы под влиянием ферментов легко расщепляются и окисляются с выделением энергии. При полном окислении 1 г углеводов высвобождается 17,6 кДж энергии. Конечные продукты окисления углеводов — углекислый газ и вода.
Важнейшая роль углеводов в энергетическом обмене живых организмов связана с их способностью расщепляться как при наличии кислорода, так и без него. Это имеет большое значение для анаэробов.
- Запасающая функция. Полисахариды являются запасными питательными веществами, играя роль «хранилищ» энергии. Резервным углеводом растений является крахмал, животных и грибов — гликоген, бактерий — муреин (пептидогликан). При необходимости эти полисахариды расщепляются до глюкозы, которая служит основным источником энергии для большинства живых организмов.
- Структурная функция. Углеводы используются в качестве строительного материала. Оболочки клеток растений на 20-40 % состоят из целлюлозы, которая обладает высокой прочностью. Поэтому они надежно защищают внутриклеточное содержимое и поддерживают форму клеток. Хитин является важным структурным компонентом наружного скелета членистоногих, кольчатых червей, клеточных оболочек грибов и некоторых протист.
Биологические функции углеводов
- Олиго- и полисахариды входят в состав цитоплазматической мембраны клеток животных, образуя надмембранный комплекс — гликокаликс. Углеводные компоненты цитоплазматической мембраны выполняют рецепторную функцию: воспринимают сигналы из окружающей среды и передают их в клетку.
- Метаболическая функция углеводов состоит в том, что в клетках живых организмов моносахариды являются основой для синтеза многих органических веществ — олиго- и полисахаридов, нуклеотидов, некоторых спиртов. Ряд веществ, образующихся в ходе расщепления молекул моносахаридов, используется клетками для синтеза аминокислот, жирных кислот и др.
- Защитная. Они входят в состав слизей, предохраняющих кишечник, бронхи от механических повреждений, в состав репарина — вещества, предотвращающего свёртывание крови у человека.
- Осмотическая. Углеводы участвуют в регуляции осмотического давления в организме.
Вам будет интересно
Изучить строение, свойства и функции. Упражнения по пройденному материалу
Массовая доля углеводов в живой природе больше, чем других органических соединений. В клетках животных и грибов углеводы содержатся в незначительном количестве (около 1% сухой массы, в клетках печени и мышц — до 5%), тогда как в растительных клетках их содержание значительно больше (60 — 90%). Углеводы образуются преимущественно в результате фотосинтеза. Гетеротрофные организмы получают углеводы из пищи или синтезируют их из других органических соединений (жиров, аминокислот и т.д.).
Углеводы — это органические соединения, в которых соотношение углерода, кислорода в основном соответствует формуле (СН 2 О) n , где n = 3 и больше. Однако есть углеводы, в которых это соотношение несколько иное, а некоторые содержат атомы азота, фосфора или серы.
К углеводам относятся моносахариды, олигосахариды и полисахариды.
Моносахариды — хорошо растворимые в вещества, имеют сладкий вкус. Рассмотрим строение моносахаридов на примере глюкозы. Ее молекулярная формула С 6 Н 12 0 6 .
Молекула глюкозы
Моносахариды классифицируют по количеству атомов углерода в их молекулах. Наиболее важными для живой природы является пентозы (соединения с пятью атомами углерода) и гексозы (соединения с шестью атомами углерода). Распространенными гексозами, кроме глюкозы, являются фруктоза и галактоза. Из пентоз распространены рибоза и дезоксирибоза, остатки которых входят в состав мономеров нуклеиновых кислот. Моносахариды способны сочетаться между собой с помощью -ОН- групп. При этом образуется между двумя остатками моносахаридов через атом кислорода (-O-).
Схема образования полисахаридов на примере целлюлозы (фрагмент молекулы)
Олигосахариды и полисахариды состоят из остатков моносахаридов. Олигосахариды — полимерные углеводы, в которых от 2 до 10 моносахаридных звеньев соединены ковалентными связями. Например, дисахариды образованы двумя остатками моносахаридов. В природе распространены такие дисахариды: обычный пищевой сахар — сахароза (состоит из остатков глюкозы и фруктозы) и молочный сахар — лактоза (состоит из остатков глюкозы и галактозы).
В результате взаимодействия моносахаридов могут формироваться цепочки в сотни и тысячи остатков — полисахариды. Эти соединения плохо растворимые в воде и не имеют сладкого вкуса. В природе распространены полисахариды, образованные из остатков глюкозы, это целлюлоза, гликоген и крахмал. Другой распространенный в природе полисахарид — хитин состоит из азотсодержащих производных глюкозы.
Функции углеводов достаточно разнообразны. Энергетическая функция обусловлена тем, что в результате полного расщепления 1 г углеводов высвобождается 17,6 кДж энергии. Часть этой энергии обеспечивает функционирование организма, а часть выделяется в виде теплоты. Наибольшее количество энергии высвобождается в результате окисления углеводов кислородом, однако расщепление углеводов с выделением энергии может происходить и в других случаях. Это важно для организмов, которые существуют в условиях недостатка или отсутствия кислорода.
Полисахариды могут накапливаться в клетках, то есть выполнять резервную функцию. В клетках животных и грибов накапливается гликоген, в клетках растений — крахмал. Строительная (структурная) функция углеводов заключается в том, что полисахариды входят в состав определенных структур. Так, хитин формирует внешний скелет членистоногих и содержится в клеточной стенке грибов, а целлюлоза — в клеточной стенке растений. Углеводы, связанные с и липидами, располагаются снаружи плазматической мембраны животной клетки и клеточной стенки бактерий. Особые соединения углеводов с белками (мукополисахариды) выполняют в организмах позвоночных животных и человека функцию смазки — они входят в состав жидкости, смазывает поверхности суставов.
Цепи полисахаридов могут линейно располагаться в пространстве или разветвляться, что связано с их функциями. Цепи полисахаридов, которые входят в состав структур клетки или организма, соединяются многочисленными связями между собой, что обеспечивает прочность и химическую стойкость этих веществ. Однако большинство полисахаридов являются резервными веществами животных и растительных клеток, имеют многочисленные разветвленные цепи, вследствие чего в клетке эти молекулы быстро расщепляются до глюкозы во многих точках одновременно.
Строение, свойства и биологическая роль липидов
В состав каждой клетки организма входят липиды. Липиды — это производные жирных кислот и многоатомных спиртов или альдегидов. Жирными кислотами являются органические кислоты с цепью от четырех и более (до 24) атомов углерода, обычно это неразветвленная цепь. Некоторые липиды имеют несколько другое строение, но также плохо растворяются в воде.
Липиды гидрофобные, но хорошо растворяются в неполярных растворителях: бензоле, хлороформе, ацетоне.
Большую группу липидов составляют жиры. Жиры — эфиры трехатомных спирта глицерина и трех остатков неразветвленных жирных кислот. Одна из важнейших функций жиров — энергетическая. В случае полного расщепления 1 г жиров выделяется 38,9 кДж энергии — вдвое больше, чем за полного расщепления аналогичного количества углеводов или белков. Резервная функция заключается в том, что жиры содержатся в цитоплазме клеток в виде включений — в клетках жировой , семенах подсолнечника и др. Запасы жиров могут использоваться организмами как резервные питательные вещества и как источник метаболической воды (при окислении 1 г жиров образуется около 1,1 мл воды).
Накапливаясь в подкожной жировой клетчатке животных, жиры защищают организм от действия резких изменений температуры, выполняя теплоизоляционную функцию. Эта функция жиров обусловлена их низкой теплопроводностью. Запасы жиров в организме могут выполнять и защитную функцию. В частности, они защищают внутренние органы от механических повреждений.
Подобными жирам по строению соединениями являются воски, слой которых покрывает листья и плоды наземных растений, поверхность хитинового скелета многих членистоногих, предотвращая избыточное испарение воды с поверхности тела.
Отдельную группу липидов образуют стероиды. Важнейшим стероидом организма животных является холестерин — составляющая клеточных мембран, а также предшественник для синтеза витамина D, гормонов надпочечников и половых желез.
Среди липидов есть соединения, образованные в результате взаимодействия молекул простых липидов с другими веществами. К ним относятся липопротеиды (соединения липидов и белков), гликолипиды (липидов и углеводов), фосфолипиды (содержащие остатки ортофосфорная кислота)
В состав клеток входит множество органических соединений: углеводы, белки, липиды, нуклеиновые кислоты и другие соединения, которых нет в неживой природе. Органическими веществами называют химические соединения, в состав которых входят атомы углерода.
Атомы углерода способны вступать друг с другом в прочную ковалентную связь, образуя множество разнообразных цепочечных или кольцевых молекул.
Самыми простыми углеродсодержащими соединениями являются углеводороды — соединения, которые содержат только углерод и водород. Однако в большинстве органических, т. е. углеродных, соединений содержатся и другие элементы (кислород, азот, фосфор, сера).
Биологические полимеры (биополимеры). Биологические полимеры — это органические соединения, входящие в состав клеток живых организмов и продуктов их жизнедеятельности.
Полимер (от греч. «поли» — много) — многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество — мономер. Мономеры, соединяясь между собой, образуют цепи, состоящие из тысяч мономеров. Если обозначить тип мономера определенной буквой, например А, то полимер можно изобразить в виде очень длинного сочетания мономерных звеньев: А—А—А—А—…—А. Это, например, известные вам органические вещества: крахмал, гликоген, целлюлоза и др. Биополимерами являются белки, нуклеиновые кислоты, полисахариды.
Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер.
Если соединить вместе два типа мономеров А и Б, то можно получить очень большой набор разнообразных полимеров. Строение и свойства таких полимеров будут зависеть от числа, соотношения и порядка чередования, т. е. положения мономеров в цепях. Полимер, в молекуле которого группа мономеров периодически повторяется, называют регулярным. Таковы, например, схематически изображенные полимеры с закономерным чередованием мономеров:
А Б А Б А Б А Б…
А А Б Б А А Б Б…
А Б Б А Б Б А Б Б А Б Б…
Однако значительно больше можно получить вариантов полимеров, в которых нет видимой закономерности в повторяемости мономеров. Такие полимеры называют нерегулярными. Схематически их можно изобразить так:
ААБАБББАААББАБББББААБ…
Допустим, что каждый из мономеров определяет какое-либо свойство полимера. Например, мономер А определяет высокую прочность, а мономер Б — электропроводность. Сочетая эти два мономера в разных соотношениях и по-разному чередуя их, можно получить огромное число полимерных материалов с разными свойствами. Если же взять не два типа мономеров (А и Б), а больше, то и число вариантов полимерных цепей значительно возрастет.
Оказалось, что сочетание и перестановка нескольких типов мономеров в длинных полимерных цепях обеспечивает построение множества вариантов и определяет различные свойства биополимеров, входящих в состав всех организмов. Этот принцип лежит в основе многообразия жизни на нашей планете.
Углеводы и их строение. В составе клеток всех живых организмов широкое распространение имеют углеводы. Углеводами называют органические соединения, состоящие из углерода, водорода и кислорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы). Общая формула таких углеводов С n (Н 2 0) m . Примером может служить один из самых распространенных углеводов — глюкоза, элементный состав которой С 6 Н 12 0 6 (рис. 2). Глюкоза является простым сахаром. Несколько остатков простых сахаров соединяются между собой и образуют сложные сахара. В составе молока находится молочный сахар, который состоит из остатков молекул двух простых сахаров (дисахарид). Молочный сахар — основной источник энергии для детенышей всех млекопитающих.
Тысячи остатков молекул одинаковых сахаров, соединяясь между собой, образуют биополимеры — полисахариды. В составе живых организмов имеется много разнообразных полисахаридов: у растений это крахмал (рис. 3), у животных — гликоген, тоже состоящий из тысяч молекул глюкозы, но еще более ветвистый. Крахмал и гликоген играют роль как бы аккумуляторов энергии, необходимой для жизнедеятельности клеток организма. Очень богаты крахмалом картофель, зерна пшеницы, ржи, кукурузы и др.
Функции углеводов. Важнейшая функция углеводов — энергетическая. Углеводы служат основным источником энергии для организмов, питающихся органическими веществами. В пищеварительном тракте человека и животных полисахарид крахмал расщепляется особыми белками (ферментами) до мономерных звеньев — глюкозы. Глюкоза, всасываясь из кишечника в кровь, окисляется в клетках до углекислого газа и воды с освобождением энергии химических связей, а избыток ее запасается в клетках печени и мышц в виде гликогена. В периоды интенсивной мышечной работы или нервного напряжения (либо при голодании) в мышцах и печени животных расщепление гликогена усиливается. При этом образуется глюкоза, которая потребляется интенсивно работающими мышечными и нервными клетками.
Таким образом, биополимеры полисахариды — это вещества, в которых запасается используемая клетками энергия растительных и животных организмов.
В растениях в результате полимеризации глюкозы образуется не только крахмал, но и целлюлоза. Из целлюлозных волокон строится прочная основа клеточных стенок растений. Благодаря особому строению целлюлоза нерастворима в воде и обладает высокой прочностью. По этой причине целлюлозу используют и для изготовления тканей. Ведь хлопок почти чистая целлюлоза. В кишечнике человека и большинства животных нет ферментов, способных расщеплять связи между молекулами глюкозы, входящими в состав целлюлозы. У жвачных животных целлюлозу расщепляют ферменты бактерий, постоянно обитающих в специальном отделе желудка.
Известны также сложные полисахариды, состоящие из двух типов простых сахаров, которые регулярно чередуются в длинных цепях. Такие полисахариды выполняют структурные функции в опорных тканях животных. Они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность. Таким образом, важной функцией углеводных биополимеров является структурная функция.
Имеются полимеры сахаров, которые входят в состав клеточных мембран; они обеспечивают взаимодействие клеток одного типа, узнавание клетками друг друга. Если разделенные клетки печени смешать с клетками почек, то они самостоятельно разойдутся в две группы благодаря взаимодействию однотипных клеток: клетки почек соединятся в одну группу, а клетки печени — в другую. Утрата способности узнавать друг друга характерна для клеток злокачественных опухолей. Выяснение механизмов узнавания и взаимодействия клеток может иметь важное значение, в частности для разработки средств лечения рака.
Липиды. Липиды разнообразны по структуре. Всем им присуще, однако, одно общее свойство: все они неполярны. Поэтому они растворяются в таких неполярных жидкостях, как хлороформ, эфир, но практически нерастворимы в воде. К липидам относятся жиры и жироподобные вещества. В клетке при окислении жиров образуется большое количество энергии, которая расходуется на различные процессы. В этом заключается энергетическая функция жиров.
Жиры могут накапливаться в клетках и служить запасным питательным веществом. У некоторых животных (например, у китов, ластоногих) под кожей откладывается толстый слой подкожного жира, который благодаря низкой теплопроводности защищает их от переохлаждения, т. е. выполняет защитную функцию.
Некоторые липиды являются гормонами и принимают участие в регуляции физиологических функций организма. Липиды, содержащие остаток фосфорной кислоты (фосфолипиды), служат важнейшей составной частью клеточных мембран, т. е. они выполняют структурную функцию.
Выберите рубрику Биология Тесты по биологии Биология. Вопрос — ответ. Для подготовки к ЕНТ Учебно-методическое пособие по биологии 2008 г Учебная литература по биологии Биология-репетитор Биология. Справочные материалы Анатомия, физиология и гигиена человека Ботаника Зоология Общая биология Вымершие животные Казахстана Жизненные ресурсы человечества Действительные причины голода и нищеты на Земле и возможности их устранения Пищевые ресурсы Ресурсы энергии Книга для чтения по ботанике Книга для чтения по зоологии Птицы Казахстана. Том I География Тесты по географии Вопросы и ответы по географии Казахстана Тестовые задания, ответы по географии для поступающих в ВУЗы Тесты по географии Казахстана 2005 Информация История Казахстана Тесты по Истории Казахстана 3700 тестов по истории Казахстана Вопросы и ответы по истории Казахстана Тесты по истории Казахстана 2004 Тесты по истории Казахстана 2005 Тесты по истории Казахстана 2006 Тесты по истории Казахстана 2007 Учебники по истории Казахстана Вопросы историографии Казахстана Вопросы социально-экономического развития Советского Казахстана Ислам на территории Казахстана. Историография советского Казахстана (очерк) История Казахстана. Учебник для студентов и школьников. ВЕЛИКИЙ ШЕЛКОВЫЙ ПУТЬ НА ТЕРРИТОРИИ КАЗАХСТАНА И ДУХОВНАЯ КУЛЬТУРА В VI-XII вв. Древние государства на территории Казахстана: Уйсуны, Канглы, Хунну Казахстан в древности Казахстан в эпоху средневековья (XIII — 1 пол. XV вв.) Казахстан в составе Золотой Орды Казахстан в эпоху монгольского владычества Племенные союзы Саков и Сарматов Раннесредневековый Казахстан (VI-XII вв.) Средневековые государства на территории Казахстана в XIV-XV вв ХОЗЯЙСТВО И ГОРОДСКАЯ КУЛЬТУРА РАННЕСРЕДНЕВЕКОВОГО КАЗАХСТАНА (VI-XII вв.) Экономика и культура средневековых государств Казахстана XIII-XV вв. КНИГА ДЛЯ ЧТЕНИЯ ПО ИСТОРИИ ДРЕВНЕГО МИРА Религиозные верования. Распространение ислама Хунну: археология, происхождение культуры, этническая история Хуннский некрополь Шомбуузийн Бэльчээр в горах монгольского Алтая Школьный курс истории Казахстана Августовский переворот 19-21 августа 1991 года ИНДУСТРИАЛИЗАЦИЯ Казахско-китайские отношения в XIX веке Казахстан в годы застоя (60-80-е годы) КАЗАХСТАН В ГОДЫ ИНОСТРАННОЙ ИНТЕРВЕНЦИИ И ГРАЖДАНСКОЙ ВОЙНЫ (1918-1920 ГГ.) Казахстан в годы перестройки Казахстан в новое время КАЗАХСТАН В ПЕРИОД ГРАЖДАНСКОГО ПРОТИВОСТОЯНИЯ НАЦИОНАЛЬНО-ОСВОБОДИТЕЛЬНОЕ ДВИЖЕНИЕ 1916 ГОДА КАЗАХСТАН В ПЕРИОД ФЕВРАЛЬСКОЙ РЕВОЛЮЦИИ И ОКТЯБРЬСКОГО ПЕРЕВОРОТА 1917 г. КАЗАХСТАН В СОСТАВЕ СССР Казахстан во второй половине 40-х — середине 60-х годов. Общественно-политическая жизнь КАЗАХСТАНЦЫ В ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЕ Каменный век Палеолит (древнекаменный век) 2,5 млн.-12 тыс. до н.э. КОЛЛЕКТИВИЗАЦИЯ МЕЖДУНАРОДНОЕ ПОЛОЖЕНИЕ НЕЗАВИСИМОГО КАЗАХСТАНА Национально-освободительные восстания Казахского народа в ХVIII-ХIХ вв. НЕЗАВИСИМЫЙ КАЗАХСТАН ОБЩЕСТВЕННО-ПОЛИТИЧЕСКАЯ ЖИЗНЬ В 30-е ГОДЫ. НАРАЩИВАНИЕ ЭКОНОМИЧЕСКОЙ МОЩИ КАЗАХСТАНА. Общественно-политическое развитие независимого Казахстана Племенные союзы и ранние государства на территории Казахстана Провозглашение суверенитета Казахстана Регионы Казахстана в раннем железном веке Реформы управления Казахстаном СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ В ХIХ-НАЧАЛЕ XX ВЕКА Средние века ГОСУДАРСТВА В ПЕРИОД РАСЦВЕТА СРЕДНЕВЕКОВЬЯ (Х-ХIII вв.) Казахстан в XIII-первой половине XV веков Раннесредневековые государства (VI-IX вв.) Укрепление Казахского ханства в XVI-XVII веках ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ: УСТАНОВЛЕНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ История России ИСТОРИЯ ОТЕЧЕСТВА XX ВЕК 1917 ГОД НОВАЯ ЭКОНОМИЧЕСКАЯ ПОЛИТИКА ОТТЕПЕЛЬ ПЕРВАЯ РУССКАЯ РЕВОЛЮЦИЯ (1905-1907) ПЕРЕСТРОЙКА ПОБЕДИВШАЯ ДЕРЖАВА (1945-1953) РОССИЙСКАЯ ИМПЕРИЯ В МИРОВОЙ ПОЛИТИКЕ. ПЕРВАЯ МИРОВАЯ ВОЙНА РОССИЯ В НАЧАЛЕ XX ВЕКА Политические партии и общественные движения в начале XX века. РОССИЯ МЕЖДУ РЕВОЛЮЦИЕЙ И ВОЙНОЙ (1907-1914) СОЗДАНИЕ В СССР ТОТАЛИТАРНОГО ГОСУДАРСТВА (1928-1939) Обществознание Различные материалы по учебе Русский язык Тесты по русскому языку Вопросы и ответы по русскому языку Учебники по русскому языку Правила русского языкаУглеводы представляют собой сложные органические соединения, в их состав входят атомы углерода, кислорода и водорода.
Различают простые и сложные углеводы. Простые углеводы называют моносахаридами. Сложные углеводы представляют собой полимеры, в которых моносахариды играют роль мономеров. Из двух моносахаридов образуется дисахарид, из трех — трисахарид, из многих — полисахарид.
Все моносахариды — бесцветные вещества, хорошо растворимые в воде. Почти все они обладают приятным сладким вкусом. Самые распространенные моносахариды — глюкоза, фруктоза, рибоза и дезоксирибоза. Сладкий вкус фруктов и ягод, а также меда зависит от содержания в них глюкозы и фруктозы. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ .
Ди- и трисахариды, подобно моносахаридам, хорошо растворяются в воде, обладают сладким вкусом. С увеличением числа мономерных звеньев растворимость полисахаридов уменьшается, сладкий вкус исчезает.
Из дисахаридов важны свекловичный (или тростниковый) и молочный сахар, из полисахаридов широко распространены крахмал (у растений), гликоген (у животных), клетчатка (целлюлоза). Древесина — почти чистая целлюлоза. Мономерами этих полисахаридов является глюкоза.
Биологическая роль углеводов.
Углеводы играют роль источника энергии, необходимой для осуществления клеткой различных форм активности. Для деятельности клетки — движения, секреции, биосинтеза, свечения и т. д. — необходима энергия. Сложные по структуре, богатые энергией, углеводы подвергаются в клетке глубокому расщеплению и в результате превращаются в простые, бедные энергией соединения — оксид углерода (IV) и воду (СО 2 и Н 2 О). В ходе этого процесса освобождается энергия. При расщеплении 1 г углевода освобождается 17,6 кДж.
Кроме энергетической, углеводы выполняют и строительную функцию. Например, из целлюлозы состоят стенки растительных клеток.
Липиды.
Липиды представляют собой органические вещества, нерастворимые в воде, но растворимые в бензине, эфире, ацетоне.
Из липидов самые распространенные и известные — жиры. Содержание жира в клетках обычно невелико: 5-10% (от сухого вещества). Существуют, однако, клетки, в которых около 90% жира. У животных такие клетки находятся под кожей, в грудных железах, сальнике. Жир содержится в молоке всех млекопитающих. У некоторых растений большое количество жира сосредоточено в семенах и плодах, например у подсолнечника, конопли, грецкого ореха.
Кроме жиров в клетках присутствуют и другие липиды, например лецитин, холестерин. К липидам относятся некоторые витамины (А, D) и гормоны (например, половые).
Биологическое значение липидов велико и многообразно. Отметим прежде всего их строительную функцию. Липиды гидрофобны. Тончайший слой этих веществ входит в состав клеточных мембран. Велико значение самого распространенного из липидов — жира — как источника энергии. Жиры способны окисляться в клетке до оксида углерода (IV) и воды. В ходе расщепления жира освобождается в два раза больше энергии, чем при расщеплении углеводов. Животные и растения откладывают жир в запас и расходуют его в процессе жизнедеятельности. Высокое содержание жира в семенах необходимо для обеспечения энергией проростка, пока он не перейдет к самостоятельному питанию.
Необходимо отметить далее значение жира как источника воды. Из 1 кг жира при его окислении образуется почти 1,1 кг воды. Это объясняет, каким образом некоторые животные способны обходиться довольно значительное время без воды. Верблюды, например, совершающие переход через безводную пустыню, могут не пить в течение 10 — 12 дней. Медведи, сурки и другие животные в спячке не пьют более двух месяцев. Необходимую для жизнедеятельности воду эти животные получают в результате окисления жира. Кроме структурной и энергетической функций, липиды выполняют защитные функции; жир обладает низкой теплопроводностью. Он откладывается под кожей, образуя у некоторых животных значительные скопления. Так, у кита толщина подкожного слоя жира достигает 1 м, что позволяет этому животному жить в холодной воде полярных морей.
Главная > ЛекцияЛекция 3. Углеводы, липиды Углеводы. Углеводы, или сахариды – органические вещества, в состав которых входят углерод, кислород, водород. Химический состав углеводов характеризуется их общей формулой С m (Н 2 О) n , где m ≥ n. Углеводы составляют около 1% массы животных клетках, а в клетках печени и мышц – до 5%. Наиболее богаты углеводами растительные клетки (до 90%). Количество атомов водорода в молекулах углеводов, как правило, в два раза больше количества атомов кислорода (то есть как в молекуле воды). Отсюда и название – углеводы. Различают две группы углеводов: простые и сложные.Простые углеводы. Простые углеводы называют моносахаридами , так как они не гидролизуются при переваривании, в отличии от сложных, которые при гидролизе распадаются с образованием моносахаридов. Общая формула простых сахаров – (СН 2 О) n , где n ≥ 3.В зависимости от числа атомов углерода в молекуле моносахаридов различают: триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С). В природе наиболее широко распространены пентозы и гексозы. В
Рис. . Пентозы:
1 — рибоза; 2 — дезоксирибоза.
Ажнейшие моносахариды: из пентоз – рибоза (С 5 Н 10 О 5) и дезоксирибоза (С 5 Н 10 О 4), входящие в состав нуклеотидов ДНК, РНК и АТФ. Дезоксирибоза отличается от рибозы тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу как у рибозы. И
Рис. . Линейная и циклическая структура молекулы глюкозы.
З гексоз наиболее распространены глюкоза, фруктоза и галактоза (общая формула С 6 Н 12 О 6). Глюкоза (виноградный сахар) – это первичный источник энергии для клеток. Входит в состав сложных углеводов. Обязательный компонент крови. Снижение ее количества приводит к немедленному нарушению жизнедеятельности нервных и мышечных клеток. Находясь в клетках, регулирует осмотическое давление. Фруктоза в свободном виде встречается в плодах. Особенно много ее в меде, фруктах. Значительно слаще глюкозы и других сахаров. Входит в состав олиго- и полисахаридов, участвует в поддержании тургора растительных клеток. Галактоза – также пространственный изомер глюкозы. Вместе с глюкозой образуют важнейший дисахарид молока – лактозу , называемую молочным сахаром . Легко превращается в глюкозу. М
Рис. . Изомеры глюкозы:
1 — -изомер; 2 — -изомер.
Олекулы моносахаридов могут иметь вид прямолинейных цепочек или циклических структур (рис.). Для пентоз и гексоз – наиболее характерна именно циклическая структура, линейные молекулы встречаются очень редко. Молекулы дисахаридов и полисахаридов также образованы циклическими формами моносахаридов. Моносахариды могут быть представлены в форме - и -изомеров (рис.). Гидроксильная группа при первом атоме углерода может располагаться как под плоскостью цикла (-изомер), так и над ней (-изомер), -изомеры образуют молекулы крахмала и гликогена, -изомеры – целлюлозы.Свойства моносахаридов: низкая молекулярная масса, сладкий вкус, легко растворяются в воде, кристаллизуются, относятся к редуцирующим (восстанавливающим) сахарам.Сложные углеводы. Сложными называют углеводы, молекулы которых при гидролизе распадаются с образованием моносахаридов. Их состав выражается общей формулой Сm(H 2 O)n, где m>n. Сложные углеводы делятся на олигосахариды и полисахариды .О
Рис. . Образование дисахарида.
Лигосахариды. Олигосахаридами называют сложные углеводы, содержащие от 2 до 10 моносахаридных остатков. В зависимости от количества остатков моносахаридов, входящих в молекулы олигосахаридов, различают дисахариды, трисахариды, тетрасахариды и т.д. Наиболее широко распространены в природе дисахариды. Дисахариды – олигосахариды, молекулы которых образованы двумя остатками моносахаридов. Дисахариды образуются в результате конденсации двух моносахаридов (чаще всего гексоз) (рис.). Связь, возникающую между двумя моносахаридами, называют гликозидной . Обычно она образуется между 1-м и 4-м углеродными атомами соседних моносахаридных единиц – 1,4-гликозидная связь . Важнейшие дисахариды – мальтоза, лактоза, сахароза. Мальтоза (солодовый сахар) состоит из двух остатков -глюкозы. Дисахарид хорошо растворим в воде. Образуется в результате реакции конденсации двух молекул -глюкозы или ферментом мальтаза при гидролизе крахмала.Сахароза (тростниковый, свекловичный сахар) состоит из остатков -глюкозы и фруктозы. Легко растворим в воде. Широко распространен в растениях. Углеводы, образовавшиеся в процессе фотосинтеза, в виде сахарозы оттекают из листьев . Сахароза легко превращается в крахмал и гликоген. Играет огромную роль в питании животных и человека. В основном сахарозу получают из сахарной свеклы и сахарного тростника.
Рис. . Важнейшие дисахариды
Лактоза (молочный сахар) образована остатками галактозы и -глюкозы . Плохо растворим в воде. Входит в состав молока. Является источником энергии для детенышей млекопитающих. В свободном виде обнаружен у некоторых растений. Используется в микробиологической промышленности для приготовления питательных сред.Свойства олигосахаридов: сравнительно невысокая (несколько сотен) молекулярная масса, хорошая растворимость в воде, легко кристаллизуются, обладают, как правило, сладким вкусом, могут быть как редуцирующими, так и нередуцирующими.Полисахариды. Высокомолекулярные органические вещества, биополимеры, мономерами которых являются простые углеводы. Чаще всего мономером полисахаридов является глюкоза, иногда галактоза и другие сахара. Как правило, в состав полисахаридов входит несколько сотен мономерных единиц. П
Рис.267. Образование разветвленного полисахарида.
Олисахариды образуются в результате реакции поликонденсации (рис.). Если в молекуле полисахарида присутствуют только 1,4-гликозидные связи, то образуется линейный, неразветвленный полимер (целлюлоза). Если присутствуют как 1,4, так и 1,6-гликозидные связи, полимер будет разветвленным (гликоген).1,6-гликозидная связь образуется между остатками моносахаридов, входящих в состав разных линейных цепей. Наиболее важные полисахариды – крахмал, гликоген, целлюлоза, хитин, муреин.Крахмал – основной резервный углевод растений. Общая формула (С 6 Н 10 О 5) n , где n- количество остатков -глюкозы. Нерастворим в холодной воде. В горячей воде образует раствор, по свойствам напоминающий коллоидный (крахмальный клейстер). Молекула крахмала примерно на 20% состоит из амилозы и на 80% из амилопектина . Линейные цепи амилозы состоят из нескольких тысяч остатков глюкозы и способны спирально свертываться, принимая более компактную форму. Амилопектин интенсивно ветвится, и за счет этого обеспечивается его компактность.
Гликоген . Основной резервный углевод животных и человека. Обнаружен также в грибах, дрожжах и зернах кукурузы. Содержится главным образом в печени (20%) и мышцах (4%). Служит источником глюкозы. Молекула сходна с молекулой амилопектина, но сильнее ветвится. Гликоген сравнительно хорошо растворим в горячей воде.Целлюлоза (клетчатка). Основной структурный углевод клеточных стенок растений. Один из самых распространенных природных полимеров: в ней аккумулировано около 50% всего углерода биосферы. Целлюлоза нерастворима в воде, лишь набухает в ней. Является линейным полимером -глюкозы. В отличие от крахмала, остатки глюкозы соединены в молекуле целлюлозы -гликозидными связями, что исключает ее расщепление пищеварительными соками человека, так как у человека отсутствуют ферменты, способные разрывать -гликозидные связи целлюлозы.Хитин – полисахарид, полимер аминопроизводного -глюкозы, выполняет защитную и структурную функции в клеточных стенках некоторых животных и грибов.Муреин – полисахарид, состоящий из сети полисахаридных цепей, соединенных многочисленными пептидными цепями. Образует муреиновый каркас бактериальной стенки.Свойства полисахаридов. Имеют большую молекулярную массу (обычно сотни тысяч), не дают ясно оформленных кристаллов, либо нерастворимы в воде, либо образуют растворы, напоминающие по свойствам коллоидные, сладкий вкус не характерен, относятся к нередуцирующим углеводам.Функции углеводов. Энергетическая – одна из основных функций углеводов. Углеводы (глюкоза) – основные источники энергии в животном организме. Обеспечивают до 67% суточного энергопотребления (не менее 50%). При расщеплении 1 г углевода выделяется 17,6 кДж, вода и углекислый газ.Запасающая функция выражается в накоплении крахмала клетками растений и гликогена клетками животных, которые играют роль источников глюкозы, легко высвобождая ее по мере необходимости.Опорно-строительная. Углеводы входят в состав клеточных мембран и клеточных стенок (целлюлоза входит в состав клеточной стенки растений, из хитина образован панцирь членистоногих, муреин образует клеточную стенку бактерий). Соединяясь с липидами и белками, образуют гликолипиды и гликопротеины. Рибоза и дезоксирибоза входят в состав мономеров нуклеотидов.Рецепторная . Олигосахаридные фрагменты гликопротеинов и гликолипидов клеточных стенок выполняют рецепторную функцию, воспринимая сигналы, поступающие из внешней среды.Защитная. Слизи, выделяемые различными железами, богаты углеводами и их производными (например, гликопротеинами). Они предохраняют пищевод, кишечник, желудок, бронхи от механических повреждений, препятствуют проникновению в организм бактерий и вирусов.Липиды. Липиды – сборная группа органических соединений, не имеющих единой химической характеристики. Их объединяет то, что все они нерастворимы в воде, но хорошо растворимы в органических растворителях (эфире, хлороформе, бензине). Липиды содержатся во всех клетках животных и растений. Содержание липидов в клетках составляет до 5%, но в жировой ткани может иногда достигать 90%.Различают простые и сложные липиды. Простые липиды, представляют собой двухкомпонентные вещества, являющиеся сложными эфирами высших жирных кислот и какого-либо спирта, чаще – глицерина. Сложные липиды состоят имеют многокомпонентные молекулы.Из простых липидов рассмотрим жиры и воска. Жиры широко распространены в природе. Жиры – это сложные эфиры высших жирных кислот и трехатомного спирта – глицерина. В химии эту группу органических соединений принято называть триглицеридами, так как все три гидроксильные группы глицерина связаны с жирными кислотами. В составе триглицеридов обнаружено более 500 жирных кислот, молекулы которых имеют сходное строение. Как и аминокислоты, жирные кислоты имеют одинаковую для всех кислот группировку – гидрофильную карбоксильную группу (–СООН) и гидрофобный радикал, которым они отличаются друг от друга. Поэтому общая формула жирных кислот имеет вид R-CООН. Радикал представляет собой углеводородный хвост, отличающийся у разных жирных кислот количеством группировок –СН 2 . БРис. . Образование молекулы триглицерида.
Ольшая часть жирных кислот содержит в «хвосте» четное число атомов углерода, от 14 до 22 (чаще всего 16 или 18). Кроме того, углеводородный хвост может содержать различное количество двойных связей. По наличию или отсутствию двойных связей в углеводородном хвосте различают насыщенные жирные кислоты , не содержащие в углеводородном хвосте двойных связей и ненасыщенные жирные кислоты, имеющие двойные связи между атомами углерода (-СН=СН-).Если в триглицеридах преобладают насыщенные жирные кислоты, то они твердые при комнатной температуре (жиры), если ненасыщенные – жидкие (масла). Плотность жиров ниже, чем у воды, поэтому в воде они всплывают и находятся на поверхности.Воска – группа простых липидов, представляющих собой сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов. Встречаются как в животном, так и в растительном царстве, где выполняют главным образом защитные функции. У растений они, например, покрывают тонким слоем листья, стебли и плоды, предохраняя их от смачивания водой и проникновения микроорганизмов. От качества воскового покрытия зависят сроки хранения фруктов. Под покровом пчелиного воска хранится мед и развиваются личинки. К сложным липидам относятся фосфолипиды, г
Рис. 269. Фосфолипидная молекула
Ликолипиды, липопротеины, стероиды, стероидные гормоны, витамины А,D,E,K. Ф
Рис. . Бислой фосфолипидов
образующий мембрану
Осфолипиды – сложные эфиры многоатомных спиртов с высшими жирными кислотами, содержащие остаток фосфорной кислоты (рис.). Иногда с ней могут быть связаны добавочные группировки (азотистые основания, аминокислоты). Как правило, в молекуле фосфолипидов имеется два остатка высших жирных и один остаток фосфорной кислоты. Фосфолипиды присутствуют во всех клетках живых существ, участвуя главным образом в формировании фосфолипидного бислоя клеточных мембран – остатки фосфорной кислоты гидрофильны и всегда направлены к внешней и внутренней поверхности мембраны, а гидрофобные хвосты направлены друг к другу внутри мембраны.Гликолипиды – это углеводные производные липидов. В состав их молекул наряду с многоатомным спиртом и высшими жирными кислотами входят также углеводы. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.Липопротеины – липидные молекулы, связанные с белками. Их очень много в мембранах, белки могут пронизывать мембрану насквозь, находится под- или над мембраной, могут быт погружены в липидный бислой на различную глубину.Липоиды – жироподобные вещества. К ним относятся стероиды (широко распространенный в животных тканях холестерин и его производные – гормоны коры надпочечников – минералокортикоиды, глюкокортикоиды, эстрадиол и тестостерон – соответственно женский и мужской половые гормоны). К липоидам относятся терпены (эфирные масла, от которых зависит запах растений), гиббереллины (ростовые вещества растений), некоторые пигменты (хлорофилл, билирубин), жирорастворимые витамины (А, D, E, K).Функции липидов.
Примеры и пояснения | |
Энергетическая | Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж |
Структурная | Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран. |
Запасающая | Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания Масла семян растений необходимы для обеспечения энергией проростка. |
Защитная | Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов. Слои воска используются в качестве водоотталкивающего покрытия у растений и животных. |
Теплоизоляционная | Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате. |
Регуляторная | Гиббереллины регулируют рост растений. Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков. Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл. Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен. Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов. |
Источник метаболической воды | При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь. |
Каталитическая | Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т. е., сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции. |
Необходимость разработки материалов по питанию для школьников продиктована удручающими данными о состоянии здоровья современных школьников, отсутствием культуры питания как составляющей здорового образа жизни.
Какие углеводы полезны для здоровья — Школа похудения
Такие понятия, как «сахар» и «углеводы» иногда рассматриваются как равнозначные. Их значение для человека активно обсуждается на страницах журналов и интернет-сайтов, где зачастую можно увидеть следующую фразу: «избыточное употребление с пищей углеводов является причиной развития таких заболеваний как избыточная масса тела и сахарный диабета».
На наш взгляд, данное утверждение нуждается в некотором уточнении. Так ли вреден избыток «сахара» и «углеводов» для питания человека и что включают в себя данные понятия? Какие углеводы полезны для здоровья?
Питательная ценность продуктов складывается из основных составляющих: белков, жиров, углеводов, витаминов и минералов. Каждый из этих компонентов играет важную, определенную роль в жизнедеятельности организма. Белки – являются строительным материалом для клеток, жиры – выполняют пластическую функцию и т.д. Углеводы, которым эволюционно принадлежит важная роль в сохранении здоровья, составляют наибольшую часть рациона питания.
Углеводы, в зависимости от строения, делятся на 2 большие группы: простые и сложные.
-
Простые углеводы включают моносахариды (глюкоза, фруктоза, галактоза и т.д.) и дисахариды (сахароза, мальтоза, лактоза).
-
Сложные углеводы – объединяют крахмал и некрахмальные полисахариды (клетчатка, пектины), называемые также пищевыми волокнами.
Углеводы образуются в растениях в процессе фотосинтеза и занимают значительную часть их сухих веществ. Именно растительная пища – фрукты, овощи, злаки — являются основным источником углеводов для человека. Такие продукты, как мясо, рыба, птица – их не содержат. Исключение составляют два углевода — гликоген и лактоза (речь о них пойдет ниже). Источником последней является молоко и кисломолочные продукты, гликогена в незначительных количествах присутствует в печени и мясе животных.
Основная функция углеводов – энергетическая, т.е. они являются незаменимым источником энергии, которая поступает в организм человека с пищей. Важнейший углевод — глюкоза. Некоторые авторы называют её – «топливо» для организма. В процессе метаболизма все перевариваемые углеводы превращаются в глюкозу – основной источник энергии для нервной системы, мышц, легких и т.д. В тоже время, каждый углевод выполняет свою, присущую ему функцию. При этом, функции простых и сложных углеводов несколько различаются, отличаются и процессы их усвоения.
Итак, простые углеводы
Глюкоза – как указывалось выше, является основным источником энергии, необходимой для работы мышц, нервной системы. Из глюкозы образуется гликоген (о нем упоминалось чуть выше) – сложный полисахарид, который синтезируется и накапливается преимущественно в печени и в небольшом количестве – в мышцах.
В зависимости от количества поступающих в организм углеводов, глюкоза может расходоваться в организме несколькими путями:
1. Количество поступающих углеводов адекватно потребностям в них. В этих случаях – глюкоза превращается в энергию, необходимую для нормальной жизнедеятельности организма.
2. Количество поступающих углеводов превышает потребности в них. В этом случае глюкоза превращается в гликоген, который откладывается в печени и мышцах.
3. Если глюкоза будет продолжать образовываться/поступать в избыточном количестве, то депо гликогена насыщается и глюкоза начнет превращаться в жиры. Это означает, что переедание углеводов приводит к отложению жира в организме и, как результат, к избыточной массе тела и ожирению.
Фруктоза – содержится в различных ягодах, фруктах, меде. Слаще глюкозы, для её «переваривания» нет необходимости во включении в работу поджелудочной железы, т.е. инсулина.
Галактоза – образуется в организме из молочного сахара – лактозы, самостоятельно с продуктами питания в организм человека не поступает.
Сахароза (сахар) углевод с высокой энергетической ценностью. В промышленных условиях её получают из сока сахарного тростника и сахарной свеклы. В организме сахароза расщепляется на более простые углеводы глюкозу и фруктозу, которые превращаются в энергию. Таким образом, сахар является источником энергии, причем «быстрой».
Лактоза — молочный сахар. Содержится в составе молока и кисломолочных продуктов.
Таким образом, моно- и дисахариды выполняют важные для организма функции. Главное их значение – они являются источником глюкозы.
Из полисахаридов существенное место в питании занимает крахмал. Содержание его в рационе человека значительное. Крахмал медленнее усваивается в пищеварительном тракте, что отличает его от простых углеводов, скорость усвоения которых значительная. Конечным продуктом метаболизма крахмалов также является глюкоза.
Значительная часть полисахаридов представлена клетчаткой и пектинами. Они не перевариваются в пищеварительном тракте. Их основная функция – обеспечение роста нормальной флоры, нормализация моторики кишечника. Пектины, кроме того, адсорбируют на себе и выводят из организма токсичные вещества. Т.е. данные компоненты обеспечивают здоровье кишечника, а значит и всего организма.
Простые (моно- и дисахариды) и сложные углеводы иногда называют «быстрыми» и «медленными» соответственно. Что же это означает, и какое имеет значение для здоровья человека?
«Быстрые» (простые) углеводы быстро усваиваются, приводя к быстрому повышению уровня глюкозы в крови. Эти углеводы характеризуются высоким гликемическим индексом (ГИ). Другими словами, гликемический индекс характеризует скорость нарастания уровня глюкозы в крови, а не количество углеводов или энергии в продуктах питания (как иногда ошибочно считают). «Медленные» (сложные) углеводы, наоборот, вызывают постепенное повышение уровня глюкозы в крови и имеют низкий гликемический индекс. Например, большинство сладких кондитерских изделий в целом относятся к продуктам с высоким ГИ.
О низком ГИ говорят при его уровне менее 40, высоком – при уровне более 70. Следует еще раз отметить, что высокий ГИ индекс вовсе не означает высокую калорийность продукта, он об особенностях нарастания уровня глюкозы в крови. Так, некоторые продукты имеют высокий ГИ, но относительно невысокую калорийность, другие – наоборот. Например, ГИ кураги и чернослива составляет 30 и 25 соответственно (т.е. низкие), при этом калорийность данных продуктов — 240 (для кураги) и 242 (для чернослива) ккал в 100 г продукта. А вот у кабачковой икры и арбуза ГИ – 75 и 72 соответственно, при этом калорийность невысокая – 85 ккал на 100 г у кабачковой икры и 40 ккал на 100 г у арбуза.
Что же происходит в организме при употреблении «быстрых» (простых) углеводов? Их поступление вызывает моментальную реакцию поджелудочной железы и активную секрецию инсулина. Если же их поступление будет избыточным, то одномоментная нагрузка на поджелудочную железу будет очень большая. Кроме того, избыточное количество простых углеводов будет идти не на энергетические нужды организма, а превращаться в жиры и откладываться. Важно, что простые углеводы, как указывалось выше, быстро усваиваются и через 1-2 часа после их использования может вновь возникнуть ощущение голода и человек может опять начать есть. Таким образом, создается порочный круг. Именно поэтому высок риск возникновения таких заболеваний как сахарный диабет и ожирение при избыточном употреблении простых углеводов.
«Медленные» углеводы обеспечивают медленное повышение и стабильное сохранение уровня глюкозы в крови (без резких скачков), что помогает сохранению более длительного чувства насыщения и, в тоже время, не создает большой нагрузки на поджелудочную железу. Другими словами, эти углеводы не дают возможности человеку переедать.
Как же разумнее распределять использование простых и сложных углеводов в течение дня?
Безусловно, злоупотреблять продуктами – источниками «быстрых» углеводов в течение дня не рекомендуется. Однако их применение будет разумным после активной физической нагрузки (после занятий спортом), когда организму необходимо быстро восстановить израсходованные запасы энергии. Их полезно также употреблять в конце еды, при этом создается чувство насыщения и тормозится выделение желудочного сока. В остальных случаях – преимущества за «медленными» углеводами. Безусловно, тоже в пределах нормы. И будьте здоровы!
Елена Гордеева, кандидат медицинских наук
Углеводы 101: Польза углеводов
Несмотря на то, что углеводы обладают множеством преимуществ, вы должны быть уверены, что употребляете их в умеренных количествах. Диета с высоким содержанием углеводов может вызвать повышенный уровень сахара в крови и нежелательное увеличение веса. Но важно, чтобы вы употребляли достаточное количество здоровых углеводов, чтобы удовлетворить потребности вашего организма в питании и поддерживать здоровый вес.
Что такое углеводы?
Углеводы — это один из трех макроэлементов (наряду с белками и жирами), которые ежедневно требуются вашему организму.Есть три основных типа углеводов: крахмалы, клетчатка и сахар. Крахмалы часто называют сложными углеводами. Они содержатся в зерновых, бобовых и крахмалистых овощах, таких как картофель и кукуруза. Сахара известны как простые углеводы. Натуральный сахар содержится в овощах, фруктах, молоке и меде. Добавленный сахар содержится в обработанных пищевых продуктах, сиропах, сладких напитках и сладостях.
Зачем нужны углеводы?
Углеводы — главный источник энергии вашего тела: они помогают питать ваш мозг, почки, сердечные мышцы и центральную нервную систему.Например, клетчатка — это углевод, который помогает пищеварению, помогает вам чувствовать себя сытым и контролирует уровень холестерина в крови. Ваше тело может накапливать дополнительные углеводы в мышцах и печени для использования, когда вы не получаете достаточного количества углеводов в своем рационе. Диета с дефицитом углеводов может вызвать головные боли, усталость, слабость, трудности с концентрацией внимания, тошноту, запор, неприятный запах изо рта и дефицит витаминов и минералов.
Какие полезные источники углеводов?
Чтобы воспользоваться преимуществами углеводов, вам следует выбирать углеводы, богатые питательными веществами.Кристи Ферриэлл, зарегистрированный диетолог и менеджер по питанию в Reid Health, рекомендует получать как минимум половину углеводов из цельного зерна. Ферриелл отмечает, что «цельные зерна содержат клетчатку, которая помогает вам чувствовать сытость и удовлетворение меньшими порциями». Ферриель рекомендует попробовать приготовить плов из киноа с тофу и овощами по полезному для сердца рецепту, содержащему киноа, богатую клетчаткой и белком, из программы Reid’s I Heart Cooking.
Здоровые продукты, богатые углеводами (содержащие 12 или более граммов углеводов на порцию) включают
- Цельнозерновые: киноа, амарант, ячмень, коричневый рис, овсянка, цельнозерновые макаронные изделия и цельнозерновые хлопья для завтрака
- Фрукты: ягоды, цитрусовые, дыни, яблоки, груши, бананы и киви
- Крахмалистые овощи: сладкий картофель, ямс, кукуруза.горох и морковь
- Бобовые: чечевица, черная фасоль, пегая фасоль, темно-синяя фасоль, нут и соевые бобы
- Молочные продукты: нежирное молоко, простой йогурт и соевый йогурт
К здоровым продуктам с низким содержанием углеводов (менее 10 граммов на порцию) относятся
- Некрахмалистые овощи: листовая зелень, шпинат, капуста, спаржа, помидоры, брокколи, цветная капуста, стручковая фасоль, огурцы, перец, кабачки и грибы
- Орехи и семечки: семена тыквы, семечки, миндаль, кешью, грецкие орехи, арахис и фисташки
- Соевое молоко и тофу
Сколько граммов углеводов вам нужно?
Рекомендации по питанию для американцев 2010 предполагают, что большинство взрослых получают от 45 до 65 процентов своих калорий из углеводов.Поскольку углеводы содержат четыре калории на грамм, вы должны ежедневно потреблять от 225 до 325 граммов углеводов, если вы соблюдаете диету с 2000 калориями.
По данным Министерства сельского хозяйства США, вы должны потреблять как минимум рекомендуемую диетическую норму углеводов, которая составляет 130 граммов для взрослых, 175 граммов для беременных женщин и 210 граммов для женщин, кормящих грудью. Согласно рекомендациям по питанию для американцев, женщины должны потреблять 25 граммов клетчатки в день, а мужчины — 38 граммов клетчатки в день.
Что делать, если у меня диабет?
Если у вас диабет, вам следует обратиться к врачу или диетологу, который поможет вам спланировать прием пищи, чтобы контролировать уровень сахара в крови. Хотя ваши ежедневные потребности в углеводах такие же, как и у людей, не страдающих диабетом, важно избегать употребления слишком большого количества углеводов за один присест. Американская диабетическая ассоциация рекомендует ограничить потребление углеводов до 45–60 граммов с каждым приемом пищи.
Чистая прибыль
По возможности следует избегать добавления сахара, полуфабрикатов, рафинированного зерна (например, белого хлеба), газированных напитков, других сладких напитков и сладостей.Чтобы выглядеть и чувствовать себя лучше, выбирайте здоровые углеводы, богатые питательными веществами.
Роль углеводов в организме человека
Все о роли углеводов в организме человека | Vahrehvah:
Среди многих из нас существует миф, что углеводов — это плохо, а углеводов — это в основном сахара, и крахмал. Углеводы имеют решающее значение для поддержки основных жизненных функций, таких как производство энергии . Но мы также должны понимать, что углеводов нужно принимать в правильном количестве, иначе в конечном итоге это приведет к проблемам со здоровьем.
На самом деле нашему организму требуется углеводов , чтобы нормально функционировать. Он обеспечивает организм глюкозой, необходимой для правильного функционирования. Они представляют собой макроэлементы, содержащиеся во многих продуктах питания и напитках. Большинство углеводов естественным образом содержится в растительной пище, такой как зерно.
Виды углеводов:
- Сложные углеводы: Они содержатся в необработанном зерне, таком как овсянка и коричневый рис, поскольку содержат клетчатку и другие питательные вещества, жизненно важные для организма.В основном они содержатся в растительной пище. Они образуют крахмалы, которые растения используют для хранения энергии, а также целлюлозу, которая формирует структуру растений. Комплекс углеводов должен составлять примерно ½ от вашего ежедневного рациона, поскольку они являются основным источником топлива для вашего организма.
- Простые углеводы: Простые углеводы являются основным источником энергии для организма и содержатся во многих богатых питательными веществами продуктах, включая фрукты, фруктовые соки и молочные продукты.Все эти продукты также содержат значительное количество витаминов, минералов и фитохимических веществ и должны потребляться как часть здорового и хорошо сбалансированного питания. Продукты, богатые белой мукой и добавленным сахаром, называются «плохими углеводами ».
Углеводы также делятся на три части:
- Сахар: это простейших форм углеводов. Он естественным образом встречается в некоторых продуктах питания, включая фрукты, овощи, молоко и молочные продукты.Сахар включает фруктовый сахар (фруктоза), столовый сахар (сахароза) и молочный сахар (лактоза).
- Крахмал: Крахмал состоит из соединенных вместе кусочков сахара. Крахмал естественным образом содержится в овощах, зерновых, приготовленных сухих бобах и горохе.
- Волокно: также состоит из соединенных вместе кусочков сахара. Фрукты, овощи, цельнозерновые продукты, а также вареные сушеные бобы и горох относятся к числу продуктов, которые от природы богаты клетчаткой.
Где в организме содержатся углеводы? Углеводы хранятся в организме в печени и мышцах в виде гликогена.Дополнительные углеводы откладываются в организме в виде жира. Такие продукты, как крахмалистые продукты, сахар, фрукты, хлеб и злаки, богаты углеводами.
Зачем нам нужны углеводы? Углеводы — это макроэлементы, которые нам нужны в наибольших количествах. Согласно справочному рациону, 45% — 65% калорий должны поступать из углеводов.
Нам нужно это количество углеводов, потому что:
- Углеводы — главный источник топлива для организма.
- Они легко используются организмом для получения энергии.
- Все ткани и клетки нашего тела могут использовать глюкозу для получения энергии.
- Углеводы необходимы для правильного функционирования центральной нервной системы, почек, мозга и мышц (включая сердце).
- Углеводы могут накапливаться в мышцах и печени, а затем использоваться для получения энергии.
- Они важны для здоровья кишечника и удаления шлаков.
- Углеводы в основном содержатся в крахмалистых продуктах (таких как зерно и картофель), фруктах, молоке и йогурте.Другие продукты, такие как овощи, бобы, орехи, семена и творог, содержат углеводы, но в меньшем количестве.
Функции углеводов:
Углеводы выполняют шесть основных функций в организме:
- Обеспечивает энергию и регулирует уровень глюкозы в крови.
- Экономия белков для получения энергии.
- Расщепление жирных кислот и предотвращение кетоза.
- Биологические процессы распознавания.
- Ароматизаторы и подсластители.
- Пищевые волокна.
Список продуктов, содержащих углеводы : Ниже перечислены некоторые продукты, содержащие сложные углеводы. Фрукты и овощи богаты сложными углеводами. Они также содержат некоторые естественные простые углеводы, такие как глюкоза.
Фрукты и овощи содержат витаминов, минералов, высокий уровень крахмала и других сложных углеводов, и могут также содержать жиров, и белков.Фрукты и овощи , содержащие сложные углеводы включают картофеля, фасоли, моркови, окра, кабачков, огурцов, редиса, батата, лука, помидоров, яблок, клубники и т. Д.
Зеленые овощи , такие как шпинат, стручковая фасоль и брокколи, содержат сложные углеводы , , но также содержат очень высокий уровень клетчатки. Фрукты и овощи также богаты антиоксидантами и сложными углеводами. Цельнозерновые — отличный источник сложных углеводов и пищевых волокон.
В то время как все зерна содержат сложных углеводов, цельные зерна также содержат большое количество клетчатки. Зерновые с высоким содержанием сложных углеводов включают рис, кукурузу, пшеницу, овес, ячмень и т. Д. Зерновые должны составлять основу вашего основного рациона, поскольку здоровая диета с высоким содержанием сложных углеводов будет с высоким содержанием зерна.
Цельнозерновой хлеб и макаронные изделия очень богаты сложными углеводами. Хлеб , сделанный из рафинированной белой и пшеничной муки, с высоким содержанием простых углеводов, и его следует избегать. хлеб , сделанный из цельного зерна предлагает высокий уровень сложных углеводов, чтобы дать вам энергию и регулировать уровень сахара в крови.
Эти продукты также богаты клетчаткой, которая полезна для пищеварения и помогает вам дольше чувствовать сытость после еды, так что вы меньше будете испытывать соблазн перекусов или нездоровой пищи. Орехи, зерна и бобовые очень богаты сложными углеводами.
Эти продукты также содержат белок, полезные жиры, такие как жирных кислот омега-3, и ряд витаминов, и минералов. Поскольку они богаты клетчаткой, они способствуют пищеварению и помогают поддерживать здоровый вес . Орехи, семена и бобовые с высоким содержанием сложных углеводов — это нут, соевые бобы, фасоль , чечевица, и колотый горох и т. Д.
Молочные продукты содержат сложных углеводов, , но вы можете выбрать более здоровые обезжиренные молочные продукты, чтобы предотвратить высокий уровень холестерина и другие побочные эффекты диеты с высоким содержанием жиров . Соя молоко , обезжиренный йогурт и обезжиренное молоко — все это хороший выбор для добавления сложных углеводов в свой рацион.
Продукты с самым высоким содержанием углеводов (ограничьте их или избегайте): Чрезмерное потребление углеводов, особенно рафинированных, таких как сахар или кукурузный сироп, может привести к ожирению, диабету II типа , и раку. Ниже приведен список продуктов с самым высоким содержанием углеводов, почти всех этих продуктов следует избегать.
- Фруктоза и сахар-песок
- Конфеты, мармеладки и порошковые напитки
- Крупы сахарные
- Сушеные фрукты, такие как яблоки, бананы, финики и сливы, содержат много углеводов.
- Картофельные чипсы, картофельные дольки, картофель фри, рисовые лепешки и т. Д.
- Торты, выпечка, печенье, хлеб и пицца.
- Готовые приправы, консервы, сладкие спреды и джемы.
- Заправки для салатов, готовые сладкие соленья и соусы.
Поскольку Индия, как говорят, находится на грани эпидемии ожирения, важно, чтобы каждый человек имел сбалансированную диету, обеспечивающую достаточное количество углеводов , которые не позволяют вашему телу съесть собственных мышц при богатых углеводами диета иногда описывается как бережная к белку. Говорят, что организм может упаковать около 400 граммов (14 унций) гликогена в клеток печени, и мышечных клеток.
Грамм углеводов , включая глюкозы, , содержит четырех калорий. Если сложить всю глюкозу, хранящуюся в гликогене, с небольшим количеством глюкозы в ваших клетках и крови, получится около 1800 калорий энергии. Если ваша диета обеспечивает больше углеводов, чем вам необходимо для производства этого количества накопленных калорий в форме глюкозы и гликогена в ваших клетках, крови, мышцах, печени и , излишек будет превратиться в жир, что естественным образом приведет к ожирению.
Следовательно, очень важно придерживаться правильной диеты. Не забывайте быть разборчивым при употреблении в пищу простых углеводов, — более сложных, углеводов, и используйте контроль порций . Будьте более изобретательными в приготовлении пищи, откажитесь от малоподвижного образа жизни и регулярно занимайтесь физическими упражнениями, которые помогут вам оставаться в форме и оставаться сильными.
Вы также можете следить за этой кампанией, чтобы узнать о некоторых особенностях и советах выдающихся врачей из AAPI (Американской ассоциации врачей индийского происхождения), а также узнать о полезных рецептах и диетах от популярных шеф-поваров, которые вы и ваша семья можете наслаждайтесь и получайте удовольствие, оставаясь в форме и сильным.
Чтобы следовать, нажмите: https://www.facebook.com/AAPIChildhoodObesity
Наслаждайтесь здоровым питанием и Будьте в форме. Be Cool !
углеводов | Источник питания
Углеводы: качество имеет значение
Что наиболее важно, так это тип углеводов , которые вы выбираете, потому что одни источники полезнее для здоровья, чем другие.Количество углеводов в рационе — высокое или низкое — менее важно, чем тип углеводов в рационе. Например, полезные цельнозерновые продукты, такие как цельнозерновой хлеб, рожь, ячмень и киноа, являются лучшим выбором, чем очищенный белый хлеб или картофель фри. (1)
Многие люди не понимают, что такое углеводы, но имейте в виду, что гораздо важнее употреблять углеводы из здоровой пищи, чем соблюдать строгую диету, ограничивая или считая количество потребляемых углеводов в граммах.
Что такое углеводы?
Углеводы содержатся в широком спектре как здоровой, так и нездоровой пищи — хлеба, бобов, молока, попкорна, картофеля, печенья, спагетти, безалкогольных напитков, кукурузы и вишневого пирога. Они также бывают разных форм. Наиболее распространенными и распространенными формами являются сахар, волокна и крахмал.
Продукты с высоким содержанием углеводов — важная часть здорового питания. Углеводы обеспечивают организм глюкозой, которая преобразуется в энергию, используемую для поддержания функций организма и физической активности.Но качество углеводов важно; одни виды продуктов, богатых углеводами, лучше других :
- Самые здоровые источники углеводов — необработанные или минимально обработанные цельные зерна, овощи, фрукты и бобы — способствуют хорошему здоровью, доставляя витамины, минералы, клетчатку и множество важных фитонутриентов.
- К нездоровым источникам углеводов относятся белый хлеб, выпечка, газированные напитки и другие сильно переработанные или рафинированные продукты. Эти продукты содержат легкоусвояемые углеводы, которые могут способствовать увеличению веса, препятствовать снижению веса и способствовать диабету и сердечным заболеваниям.
Тарелка здорового питания рекомендует заполнять большую часть тарелки полезными углеводами — овощами (кроме картофеля) и фруктами, которые занимают примерно половину тарелки, а цельнозерновые продукты — примерно четверть тарелки.
Попробуйте эти советы по добавлению полезных углеводов в свой рацион:
1. Начните день с цельнозерновых продуктов.
Попробуйте горячие хлопья, такие как стальной или старомодный овес (не быстрорастворимый), или холодные хлопья, в которых цельное зерно указано первым в списке ингредиентов и с низким содержанием сахара.Хорошее эмпирическое правило: выбирайте хлопья, содержащие не менее 4 граммов клетчатки и менее 8 граммов сахара на порцию.
2. Используйте цельнозерновой хлеб на обед или закуски.
Не знаете, как найти цельнозерновой хлеб? Ищите хлеб, в котором в качестве первого ингредиента указывается цельнозерновой, цельнозерновой или какой-либо другой цельнозерновой хлеб, а еще лучше — хлеб, в состав которого входит только цельнозерновых зерен, например, 100-процентный цельнозерновой хлеб.
3. Также посмотрите за хлебный проход.
Хлеб из цельной пшеницы часто готовят из муки мелкого помола, а хлебные изделия часто содержат много натрия. Вместо хлеба попробуйте цельнозерновые в форме салата, например коричневый рис или киноа.
4. Выбирайте цельные фрукты вместо сока.
Апельсин содержит в два раза больше клетчатки и вдвое меньше сахара, чем стакан апельсинового сока на 12 унций.
5. Добавьте картофель, а вместо этого добавьте фасоль.
Вместо того, чтобы заедать картофелем, который, как было установлено, способствует увеличению веса, выбирайте бобы как отличный источник медленно усваиваемых углеводов.Фасоль и другие бобовые, такие как нут, также содержат здоровую дозу белка.
Список литературы
1. Mozaffarian D, Hao T., Rimm EB, Willett WC, Hu FB. Изменения в диете и образе жизни и длительное увеличение веса у женщин и мужчин. N Engl J Med . 2011; 364: 2392-404.
Условия использования
Содержание этого веб-сайта предназначено для образовательных целей и не предназначено для предоставления личных медицинских консультаций. Вам следует обратиться за советом к своему врачу или другому квалифицированному поставщику медицинских услуг с любыми вопросами, которые могут у вас возникнуть относительно состояния здоровья.Никогда не пренебрегайте профессиональным медицинским советом и не откладывайте его обращение из-за того, что вы прочитали на этом веб-сайте. Nutrition Source не рекомендует и не одобряет какие-либо продукты.
Физиология, углеводы — StatPearls — NCBI Bookshelf
Введение
Углеводы, наряду с белками и жирами, являются одним из трех макроэлементов в рационе человека. Эти молекулы содержат атомы углерода, водорода и кислорода. Углеводы играют важную роль в организме человека.Они действуют как источник энергии, помогают контролировать метаболизм глюкозы и инсулина в крови, участвуют в метаболизме холестерина и триглицеридов и помогают при брожении. Пищеварительный тракт при потреблении начинает расщеплять углеводы до глюкозы, которая используется для получения энергии. Любая дополнительная глюкоза в кровотоке сохраняется в печени и мышечной ткани до тех пор, пока не потребуется дополнительная энергия. Углеводы — это общий термин, который включает сахар, фрукты, овощи, волокна и бобовые.Несмотря на то, что существует множество видов углеводов, в рационе человека преобладает определенная часть. [1] [2] [3]
Конструкции
Моносахарид : Самая основная, основная единица углевода. Это простые сахара с общей химической структурой C6h22O6.
Дисахарид: Составные сахара, содержащие два моносахарида с удалением молекулы воды с общей химической структурой C12h32O11
Олигосахарид: Полимер содержит от трех до десяти моносахаридов
904cha31 Полисахариды, соединенные с длинными цепями Полисахариды, содержащие: 904 через гликозидные связи
Типы
Простые углеводы: Один или два сахара (моносахариды или дисахариды) объединены в простую химическую структуру.Они легко используются для получения энергии, вызывая быстрое повышение уровня сахара в крови и секреции инсулина поджелудочной железой.
Примеры: фруктоза, лактоза, мальтоза, сахароза, глюкоза, галактоза, рибоза
Продукты: конфеты, газированные напитки, кукурузный сироп, фруктовый сок, мед, столовый сахар
Сложные углеводы: Три или более сахаров (олигосахаридов или полисахаридов), связанных вместе в более сложную химическую структуру. Они перевариваются дольше и поэтому более постепенно влияют на повышение уровня сахара в крови.
Примеры: целлобиоза, рутинулоза, амилоза, целлюлоза, декстрин
Пищевые продукты: яблоки, брокколи, чечевица, шпинат, цельнозерновые неочищенные, коричневый рис
Крахмалы: Сложные углеводы содержат большое количество углеводов молекулы глюкозы. Растения производят эти полисахариды.
Примеры включают картофель, нут, макаронные изделия и пшеницу.
Клетчатка: Неперевариваемые сложные углеводы, которые способствуют здоровому росту бактерий в толстой кишке и действуют как наполнитель, облегчая дефекацию.Основные компоненты включают целлюлозу, гемицеллюлозу и пектин.
Нерастворим: абсорбирует воду в кишечнике, смягчая и увеличивая объем стула. Преимущества включают регулярное опорожнение кишечника и снижение риска дивертикулеза.
Примеры: отруби, семена, овощи, коричневый рис, кожура картофеля.
Растворимый: помогает снизить уровень холестерина и ЛПНП в крови, снижает напряжение при дефекации и снижает уровень глюкозы в крови после приема пищи.
Примерами являются мясистые фрукты, овес, брокколи и сушеные бобы.
Проблемы, вызывающие озабоченность
Углеводы связаны с кариесом зубов. Известно, что употребление большого количества сладкой пищи приводит к образованию зубного налета, кариесу и образованию кариеса. Худший углевод для разрушения зубов — сахароза. С другой стороны, фруктоза служит источником энергии для бактерий полости рта. [4] [5] [6]
Многие люди ошибочно полагают, что диета с высоким содержанием углеводов приводит к развитию диабета 2 типа, хотя на самом деле верно обратное.Данные показывают, что риск развития диабета 2 типа снижается по мере увеличения количества калорий из углеводов. Диеты с высоким содержанием углеводов, как правило, повышают чувствительность к инсулину. Таким образом, сегодня медицинские работники обычно рекомендуют диабетикам 2 типа придерживаться высокоуглеводной диеты. Дополнительным преимуществом высокоуглеводной диеты для диабетиков 2 типа является то, что она снижает риск сердечных заболеваний.
Люди, которые придерживаются диеты с высоким содержанием клетчатки, также имеют тенденцию к более низкому уровню холестерина в сыворотке и более высокому уровню ЛПВП, чем люди, придерживающиеся диеты с низким содержанием клетчатки; снижение холестерина также снижает риск сердечных заболеваний.Во многих частях Африки люди, которые придерживаются диеты с высоким содержанием клетчатки, как правило, имеют очень низкий риск рака кишечника. Но точное количество клетчатки для предотвращения рака толстой кишки остается неизвестным. Отдельные сообщения утверждают, что употребление клетчатки может снизить кровяное давление, снизить количество камней в желчном пузыре и снизить уровень сахара в крови.
Сотовая связь
Метаболизм
Переваривание углеводов начинается во рту, где начинается расщепление амилазы слюны. После распада в пищеварительной системе моносахариды всасываются в кровоток.По мере потребления углеводов уровень сахара в крови повышается, что стимулирует выработку инсулина поджелудочной железой. Инсулин сигнализирует клеткам тела, что нужно поглощать глюкозу для получения энергии или хранения. Если уровень глюкозы в крови падает, поджелудочная железа вырабатывает глюкагон, стимулируя печень высвобождать накопленную глюкозу.
Организм не может переваривать клетчатку, поэтому клетчатка не дает калорий или энергии. Он имеет множество преимуществ для здоровья, включая увеличение объема стула для облегчения выведения, предотвращение запоров, пребиотические свойства, чувство сытости и проблемы с кишечником.
Функция
Питание
Углеводы — важная часть диетического питания. Самые полезные для здоровья источники включают сложные углеводы из-за их незначительного воздействия на уровень глюкозы в крови. Эти варианты включают необработанные цельнозерновые продукты, овощи, фрукты и бобовые. В то время как простые углеводы допустимы в небольших количествах, белый хлеб, газированные напитки, выпечка и другие продукты с высокой степенью переработки менее питательны и вызывают резкое повышение уровня глюкозы в крови.Здоровый взрослый рацион должен включать от 45% до 65% углеводов как часть ежедневного потребления, что составляет примерно 200-300 г в день. Углеводы содержат около 4 ккал / грамм (17 кДж / г). Клетчатка также является важным углеводом. Здоровые взрослые должны потреблять около 30 г клетчатки в день, так как она снижает риск ишемической болезни сердца, инсультов и проблем с пищеварением.
Гликемический индекс — это инструмент, используемый для отслеживания углеводов и их индивидуального воздействия на уровень сахара в крови. По этой шкале углеводы ранжируются от 0 до 100 в зависимости от того, насколько быстро происходит повышение уровня глюкозы в крови при употреблении.Продукты с низким гликемическим индексом (55 или меньше) вызывают постепенное повышение уровня сахара в крови. Эти продукты включают в себя овсяные хлопья, овсяные отруби, мюсли, сладкий картофель, горох, бобовые, большинство фруктов и некрахмалистые овощи. Продукты со средним гликемическим индексом (от 56 до 69) включают овсяные хлопья, коричневый рис и цельнозерновой хлеб. Продукты с высоким гликемическим индексом (от 70 до 100) увеличивают риск диабета 2 типа, сердечных заболеваний, ожирения и овуляторного бесплодия. Эти продукты включают белый хлеб, кукурузные хлопья, белый картофель, крендели, рисовые лепешки и попкорн.[7]
Клиническая значимость
Две вещи, которые постоянно влияют на организм, включают физическую активность и диету. Диета должна быть сбалансированной по питанию, включая правильный тип и количество углеводов. Увеличение или уменьшение количества углеводов сверх желаемого может повлиять как на физиологические, так и на метаболические процессы. Увеличение количества простых углеводов может способствовать ожирению — заболеванию, которое подвергает людей еще большему риску дальнейших расстройств, таких как сердечно-сосудистые заболевания.Потребление углеводов также способствует развитию инсулиннезависимого диабета (диабет 2 типа) — растущей эпидемии. Однако продукты, богатые некрахмальными полисахаридами, и продукты с низким гликемическим индексом защищают от диабета. Повышенное потребление сахара также способствует развитию кариеса. [8] [9]
Нарушение всасывания углеводов может проявляться симптомами запора, диареи, метеоризма и болей в животе. Это может произойти в результате врожденных или приобретенных дефектов метаболизма ферментов или слизистой оболочки кишечника.Целиакия и болезнь Крона являются примерами вторичной мальабсорбции. Чрезмерный бактериальный рост в тонком кишечнике (SIBO) может возникать в результате обходного желудочного анастомоза или нарушений моторики желудка (хронический диабет, склеродермия), что приводит к нарушению абсорбционного интерфейса и тяжелой мальабсорбции. С другой стороны, непереносимость лактозы — это первичный дефицит лактазы. Лактаза — это фермент, расщепляющий лактозу, дисахарид, на моносахариды, глюкозу и галактозу в щеточной кайме энтероцитов.Дефицит лактазы — самый распространенный дефицит ферментов в мире. [10] Наиболее часто используемый метод диагностики мальабсорбции углеводов в тесте выдыхания водорода. При неполном всасывании непереваренные углеводы попадают в толстую кишку, где обитают бактерии, производящие газообразный водород. Уровень газообразного водорода (h3) измеряется при первом выдохе. Неметаболизированные углеводы действуют как осмотические агенты в желудочно-кишечном тракте, способствуя появлению симптомов диареи и метеоризма. Лечение большинства нарушений всасывания углеводов включает избегание связанных с ними моно- или дисахаридов.[11] [12]
Ссылки
- 1.
- Шах Р., Сабир С., Альхавадж А.Ф. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 22 сентября 2020 г. Физиология, грудное молоко. [PubMed: 30969612]
- 2.
- Bolla AM, Caretto A, Laurenzi A, Scavini M, Piemonti L. Низкоуглеводная и кетогенная диеты при диабете 1 и 2 типа. Питательные вещества. 26 апреля 2019 г .; 11 (5) [Бесплатная статья PMC: PMC6566854] [PubMed: 31035514]
- 3.
- Миллс С., Стэнтон С., Лейн Дж. А., Смит Г. Дж., Росс Р. П..Прецизионное питание и микробиом, часть I: современное состояние науки. Питательные вещества. 2019 24 апреля; 11 (4) [Бесплатная статья PMC: PMC6520976] [PubMed: 31022973]
- 4.
- Хеви Р. Стратегии разработки кандидатов в гликомиметические препараты. Фармацевтические препараты (Базель). 11 апреля 2019; 12 (2) [Бесплатная статья PMC: PMC6631974] [PubMed: 30978966]
- 5.
- Уриг М.Л., Лантаньо Б., Постиго А. Синтетические стратегии фторирования углеводов. Org Biomol Chem. 2019 29 мая; 17 (21): 5173-5189.[PubMed: 31017598]
- 6.
- Квок С.С., Гулати М., Мичос Э.Д., Поттс Дж., Ву П., Уотсон Л., Локи Ю.К., Маллен С., Мамас М.А. Компоненты питания и риск сердечно-сосудистых заболеваний и общей смертности: обзор данных метаанализов. Eur J Prev Cardiol. 2019 Сен; 26 (13): 1415-1429. [PubMed: 30971126]
- 7.
- Майно Виейтес, Калифорния, Таха Х.М., Бертон-Обанла А.А., Дуглас К.Г., Артур А.Е. Углеводное питание и риск рака. Curr Nutr Rep.2019 Сентябрь; 8 (3): 230-239. [Бесплатная статья PMC: PMC6660575] [PubMed: 30895469]
- 8.
- Mantantzis K, Schlaghecken F, Sünram-Lea SI, Maylor EA. Сахарный прилив или сахарный крах? Мета-анализ влияния углеводов на настроение. Neurosci Biobehav Rev.2019 июнь; 101: 45-67. [PubMed: 30951762]
- 9.
- Walsh T., Worthington HV, Glenny AM, Marinho VC, Jeroncic A. Зубные пасты с фтором различных концентраций для предотвращения кариеса зубов. Кокрановская база данных Syst Rev. 04 марта 2019 г .; 3: CD007868. [Бесплатная статья PMC: PMC6398117] [PubMed: 30829399]
- 10.
- Родился П.Мальабсорбция углеводов у пациентов с неспецифическими жалобами со стороны брюшной полости. Мир Дж. Гастроэнтерол. 2007, 21 ноября; 13 (43): 5687-91. [Бесплатная статья PMC: PMC4171253] [PubMed: 17963293]
- 11.
- Райтель М., Вайденхиллер М., Хагель А.Ф., Хеттерих У., Нейрат М.Ф., Konturek PC. Мальабсорбция часто встречающихся моно- и дисахаридов: уровни исследования и дифференциальный диагноз. Dtsch Arztebl Int. 2013 15 ноября; 110 (46): 775-82. [Бесплатная статья PMC: PMC3855820] [PubMed: 24300825]
- 12.
- Hammer HF, Hammer J. Диарея, вызванная нарушением всасывания углеводов. Гастроэнтерол Clin North Am. 2012 сентябрь; 41 (3): 611-27. [PubMed: 22917167]
Углеводы в питании собак — Elmo’s Kitchen
Наряду с белками и жирами углеводы являются одним из трех основных питательных веществ в пище. Потребности собак в углеводах очень обсуждаются. Ни AAFCO, ни NRC не установили минимальных требований к углеводам.
Самая важная функция углеводов — обеспечивать организм достаточным количеством энергии.Ваша собака может преобразовывать некоторые белковые аминокислоты в глюкозу (энергию) и, следовательно, не имеет особой потребности в углеводах. Однако организм вашей собаки функционирует намного лучше, если есть немного углеводов. Так же, как собака ест для удовлетворения своих энергетических потребностей, организм удовлетворяет свои потребности в энергии, прежде чем использовать содержащие энергию питательные вещества в рационе для других целей. Если в рацион входит достаточное количество углеводов, белок не будет использоваться для получения энергии, а затем может быть использован для восстановления и роста тканей.
В зависимости от молекулярной структуры углеводы служат либо источником энергии (сахар и крахмалы), либо источником пищевых волокон. После переваривания с сахаром и крахмалом может произойти одно из трех: они немедленно используются для получения энергии, они откладываются в виде гликогена в печени (для использования в будущем для получения энергии) или они откладываются в виде жира. Лишь ограниченное количество углеводов может храниться в организме в виде гликогена, поэтому, когда углеводы потребляются сверх потребности организма в энергии, большинство из них метаболизируются в жировые отложения для хранения энергии.Таким образом, потребление пищевых углеводов сверх энергетических потребностей может привести к увеличению жировых отложений и ожирению.
Пищевые волокна не оказывают заметного влияния на энергетический баланс у собак, но умеренное их содержание в рационе важно для нормального функционирования и здоровья желудочно-кишечного тракта (ЖКТ). Избыточная клетчатка часто используется в диетах для собак с избыточным весом, поскольку она помогает им чувствовать себя сытыми, собакам с определенными проблемами с кишечником и в диетах для собак с диабетом, чтобы помочь им контролировать поглощение сахара и крахмала из рациона.Клетчатку также иногда добавляют в диету, чтобы предотвратить диарею и запор. Однако, если пища содержит слишком много клетчатки, собака может насытиться до того, как съесть необходимое питание, и у нее может появиться дефицит питательных веществ. Это может быть особенно опасно для рабочих собак, которые не могут поддерживать нормальную массу тела.
У большинства здоровых взрослых собак, при условии включения в рацион достаточного количества белков и жиров, собака способна удовлетворить свои метаболические потребности в глюкозе. Тем не менее, потребность в углеводах во время беременности и кормления грудью очень обсуждалась.Исследования показывают, что, хотя глюкоза является метаболически важным питательным веществом для собаки, углеводы не являются абсолютно необходимой частью диеты, даже во время метаболически сложных этапов беременности и кормления грудью.
5 важнейших функций углеводов
Углеводы выполняют множество функций в организме животных; наиболее важным является обеспечение энергией функций организма. Несмотря на то, что жир дает больше энергии на единицу массы тела, чем углеводы (9 калорий на грамм по сравнению с 4 калориями на грамм), потребление углеводов больше, чем жиров при обычном питании.
Функции углеводов обсуждаются ниже:
1. Как источник энергии:
Основная функция углеводов — обеспечивать энергией процессы организма. Большая часть энергии в рационе (более 50-80%) обеспечивается углеводами. Некоторые из углеводов немедленно используются тканями, а остальные хранятся в виде гликогена в печени и мышцах, а некоторые — в виде жировых тканей для будущих энергетических потребностей.
2. Белкосберегающее действие:
Углеводы в основном используются организмом для удовлетворения большей части энергетических потребностей, таким образом сохраняя белок для построения и восстановления тканей. Первая физиологическая потребность организма — это потребность в энергии, которую необходимо удовлетворить, прежде чем питательные вещества будут использоваться для других функций. Таким образом, эта функция углеводов по сохранению белка для его основной цели — построения тела и восстановления тканей — очень важна.
3. Необходим для окисления жиров:
Несмотря на то, что жир дает вдвое больше энергии, чем углевод на единицу веса, углеводы необходимы для окисления жиров. Распространенное выражение «жир сгорает в огне углеводов» используется, чтобы подчеркнуть, что в отсутствие углеводов жиры не могут окисляться организмом для получения энергии. Недавние исследования показали, что щавелевоуксусная кислота, продукт распада углеводов, необходима для окисления ацетата, который является продуктом распада жиров.В отсутствие щавелевоуксусной кислоты ацетат превращается в кетоновые тела, которые накапливаются в организме, и человек страдает «кетозом» — токсическим состоянием организма. Кетоз возникает при диабете, когда клетки не могут использовать углеводы, и при голодании, когда клетки должны использовать запасы жира в организме в качестве источника энергии.
4. Роль в желудочно-кишечном тракте:
Углеводы играют важную роль в желудочно-кишечных функциях млекопитающих.Лактоза способствует росту некоторых желательных бактерий в тонком кишечнике, что вызывает синтез определенных витаминов группы B. Лактоза также улучшает усвоение кальция. Целлюлоза обеспечивает клетчатку и массу, что помогает стимулировать перистальтические движения желудочно-кишечного тракта.
5. Добавьте аромата в рацион:
Углеводные продукты добавляют вкуса, разнообразия и диеты. Поскольку они не вызывают раздражения, легко усваиваются при приготовлении, потребляются в определенном количестве и составляют основной продукт питания человека.
Почему углеводы важны для живых организмов? — Mvorganizing.org
Почему углеводы важны для живых организмов?
Углеводы важны для повседневной жизни живых организмов. Они накапливают энергию (крахмалы), обеспечивают энергией клетки (глюкозу) и придают структуру растениям и некоторым животным.
Какие две основные роли углеводы играют в живых клетках?
Углеводы необходимы для двух различных функций вашего тела — энергии и пищеварения.Большинство углеводов, таких как крахмал и сахар, распадаются на глюкозу, которая является простейшей формой углеводов и основным источником энергии для вашего тела.
Каковы функции углеводов в викторине живых организмов?
хранение и поставка энергии в живые системы. Итак, основные функции углеводов — хранить и обеспечивать энергию, а в некоторых очень важных случаях — обеспечивать структуру организмов.
Какова роль углеводов в клетках животных?
Углеводы — основной источник энергии в клетках животных.Углеводы, получаемые из продуктов растительного происхождения, служат основным источником энергии для животных.
Каковы 3 функции углеводов в живых организмах?
Четыре основные функции углеводов в организме — обеспечивать энергию, накапливать энергию, строить макромолекулы и сберегать белок и жир для других целей.
Каковы две основные функции углеводов в растениях?
Углеводы — источник энергии для растений. Две их основные функции — рост и метаболизм.
Какова основная функция углеводов в растениях?
В растениях углеводы, производимые фотосинтезом, хорошо известны своей важной ролью в качестве жизненно важных источников энергии и углеродных скелетов для органических соединений и компонентов-хранилищ.
Каковы основные функции углеводов 11 класса?
Углеводы выполняют шесть основных функций в организме:
- Обеспечивает энергию и регулирует уровень глюкозы в крови.
- Экономия белков для получения энергии.
- Расщепление жирных кислот и предотвращение кетоза.
- Биологические процессы распознавания.
- Ароматизаторы и подсластители.
- Пищевые волокна.
Каковы свойства и функции углеводов?
Служат накопителями энергии, топливом и промежуточными продуктами метаболизма. Он хранится в виде гликогена у животных и крахмала в растениях. Накопленные углеводы действуют как источник энергии вместо белков. Они образуют структурные и защитные компоненты, как в клеточной стенке растений и микроорганизмов.
Какова основная функция углеводов?
углеводов обеспечивают ваше тело энергией. Одна из основных функций углеводов — обеспечивать ваше тело энергией. Большинство углеводов в продуктах, которые вы едите, перевариваются и расщепляются на глюкозу, прежде чем попасть в кровоток.
Какое значение имеют углеводы?
Зачем нужны углеводы? Углеводы — главный источник энергии вашего тела: они помогают питать ваш мозг, почки, сердечные мышцы и центральную нервную систему.Например, клетчатка — это углевод, который помогает пищеварению, помогает вам чувствовать себя сытым и контролирует уровень холестерина в крови.
Что такое хороший углевод?
Но следующие продукты являются лучшим источником углеводов.
- Овощи. Все они.
- Целые плоды. Яблоки, бананы, клубника и др.
- Бобовые. Чечевица, фасоль, горох и др.
- Гайки. Миндаль, грецкие орехи, фундук, орехи макадамия, арахис и др.
- Семена.Семена чиа и тыквенные семечки.
- Цельное зерно.
- Клубни.
Макароны — хороший углевод?
Паста богата углеводами, что может быть вредно для здоровья при употреблении в больших количествах. Он также содержит глютен, тип белка, который вызывает проблемы у тех, кто чувствителен к глютену. С другой стороны, макаронные изделия могут содержать некоторые важные для здоровья питательные вещества.
Макароны полезны или вредны для здоровья?
Паста полезна или вредна? Паста богата углеводами, что может быть вредно для здоровья при употреблении в больших количествах.